Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 2, pp. 90-96
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the reducibility of the moduli space $M_{\mathbb{P}^3}^{\mathrm{ref}}(2;-1,4,2)$ of stable rank 2 reflexive sheaves with Chern classes $c_1=-1$, $c_2=4$, $c_3=2$ on projective space $\mathbb {P}^3$. This gives the first example of a reducible space in the series of moduli spaces of stable rank 2 reflexive sheaves with Chern classes $c_1=-1$, $c_2=4$, $c_3=2m$, $m=1,2,3,4,5,6,8$. We find two components of the expected dimension 27 of this space and give their geometric description via the Serre construction.
Mots-clés :
moduli space, Serre construction.
Keywords: stable reflexive sheaf
Keywords: stable reflexive sheaf
@article{MAIS_2014_21_2_a7,
author = {A. S. Tikhomirov and M. A. Zavodchikov},
title = {Reducibility of the {Moduli} {Space} of {Stable} {Rank} $2$ {Reflexive} {Sheaves} with {Chern} {Classes} $c_1=-1$, $c_2=4$, $c_3=2$ on {Projective} {Space} $\mathbb{P}^3$},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {90--96},
year = {2014},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/}
}
TY - JOUR
AU - A. S. Tikhomirov
AU - M. A. Zavodchikov
TI - Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
JO - Modelirovanie i analiz informacionnyh sistem
PY - 2014
SP - 90
EP - 96
VL - 21
IS - 2
UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/
LA - ru
ID - MAIS_2014_21_2_a7
ER -
%0 Journal Article
%A A. S. Tikhomirov
%A M. A. Zavodchikov
%T Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 90-96
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/
%G ru
%F MAIS_2014_21_2_a7
A. S. Tikhomirov; M. A. Zavodchikov. Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 2, pp. 90-96. http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/
[1] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 | DOI | MR | Zbl
[2] M.-C. Chang, “Stable rank $2$ reflexive sheaves on $\mathbb{P}\sp{3}$ with small $c\sb{2}$ and applications”, Trans. Amer. Math. Soc., 284:1 (1984), 57–89 | MR | Zbl
[3] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbb{P}_3$”, Math. Ann., 238 (1978), 229–280 | DOI | MR | Zbl
[4] C. Okonek, M. Schneider, H. Spindler, Vector Bundles on Complex Projective Spaces, Progress in Math., 3, Birkhäuser, 1980 | DOI | MR | Zbl
[5] R. Hartshorne, Algebraic geometry, Springer, New York, 1977 | MR | Zbl