Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 2, pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the reducibility of the moduli space $M_{\mathbb{P}^3}^{\mathrm{ref}}(2;-1,4,2)$ of stable rank 2 reflexive sheaves with Chern classes $c_1=-1$, $c_2=4$, $c_3=2$ on projective space $\mathbb {P}^3$. This gives the first example of a reducible space in the series of moduli spaces of stable rank 2 reflexive sheaves with Chern classes $c_1=-1$, $c_2=4$, $c_3=2m$, $m=1,2,3,4,5,6,8$. We find two components of the expected dimension 27 of this space and give their geometric description via the Serre construction.
Mots-clés : moduli space, Serre construction.
Keywords: stable reflexive sheaf
@article{MAIS_2014_21_2_a7,
     author = {A. S. Tikhomirov and M. A. Zavodchikov},
     title = {Reducibility of the {Moduli} {Space} of {Stable} {Rank} $2$ {Reflexive} {Sheaves} with {Chern} {Classes}  $c_1=-1$, $c_2=4$, $c_3=2$ on {Projective} {Space} $\mathbb{P}^3$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
AU  - M. A. Zavodchikov
TI  - Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes  $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 90
EP  - 96
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/
LA  - ru
ID  - MAIS_2014_21_2_a7
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%A M. A. Zavodchikov
%T Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes  $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 90-96
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/
%G ru
%F MAIS_2014_21_2_a7
A. S. Tikhomirov; M. A. Zavodchikov. Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes  $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 2, pp. 90-96. http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a7/

[1] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 | DOI | MR | Zbl

[2] M.-C. Chang, “Stable rank $2$ reflexive sheaves on $\mathbb{P}\sp{3}$ with small $c\sb{2}$ and applications”, Trans. Amer. Math. Soc., 284:1 (1984), 57–89 | MR | Zbl

[3] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbb{P}_3$”, Math. Ann., 238 (1978), 229–280 | DOI | MR | Zbl

[4] C. Okonek, M. Schneider, H. Spindler, Vector Bundles on Complex Projective Spaces, Progress in Math., 3, Birkhäuser, 1980 | DOI | MR | Zbl

[5] R. Hartshorne, Algebraic geometry, Springer, New York, 1977 | MR | Zbl