Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem about the local dynamics of the logistic equation with rapidly oscillating time-periodic piecewise constant coefficient of delay was considered. It was shown that the averaged equation is a logistic equation with two delays. The criterion of equilibrium point stability was obtained. Dynamical properties of the original equation was considered provided that the critical case of equilibrium point stability problem was implemented. It was found that an increase of delay coefficient oscillation frequency may lead to an unlimited process of “birth” and “death” steady mode.
Keywords: averaging, stability, nonlinear dynamics, normal form.
@article{MAIS_2014_21_1_a6,
     author = {N. D. Bykova and E. V. Grigorieva},
     title = {Applying the {Averaging} {Principle} to a {Logistic} {Equation} with {Rapidly} {Oscillating} {Delay}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {89--93},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a6/}
}
TY  - JOUR
AU  - N. D. Bykova
AU  - E. V. Grigorieva
TI  - Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 89
EP  - 93
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a6/
LA  - ru
ID  - MAIS_2014_21_1_a6
ER  - 
%0 Journal Article
%A N. D. Bykova
%A E. V. Grigorieva
%T Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 89-93
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a6/
%G ru
%F MAIS_2014_21_1_a6
N. D. Bykova; E. V. Grigorieva. Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 89-93. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a6/

[1] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, 1996 | MR

[2] N. N. Bogoliubov, Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961, 573 pp. | MR | MR

[3] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979, 162 pp. (in Russian) | Zbl

[4] Kolesov Yu. S., Mayorov V. V., “Novyy metod issledovaniya ustoychivosti resheniy lineynykh differentsial'nykh uravneniy s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differentsialnye uravneniya, 10:10 (1974), 1778–1788 (in Russian) | MR | Zbl

[5] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Modeling and Analysis of Information Systems, 14:3 (2007), 29–42 (in Russian) | MR

[6] Kashchenko S. A., Mayorov V. V., “Algoritm issledovaniya ustoychivosti resheniy lineynykh differentsial'nykh uravneniy s posledeystviem i bystro ostsilliruyushchimi koeffitsientami”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl, 1977, 70–81 (in Russian)