Equations of Motion of a Rigid Body with Two Elastic Rods
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we propose a mathematical model of a mechanical system consisting of a rigid body and two rigidly connected elastic straight rods located in the same plane. The system rotates around the axis passing through the mass center of a rigid body and perpendicular to the plane of the rods. The rods are modeled by the Euler–Bernoulli beam. The mathematical model is an initial-boundary value problem for a hybrid system of differential equations. The cases of fast and slow rotations of the system are considered.
Keywords: mathematical model, mechanical system, solid, elastic rod, hybrid system of differential equations.
Mots-clés : equations of motion
@article{MAIS_2014_21_1_a4,
     author = {D. A. Eliseev and E. P. Kubyshkin},
     title = {Equations of {Motion} of a {Rigid} {Body} with {Two} {Elastic} {Rods}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a4/}
}
TY  - JOUR
AU  - D. A. Eliseev
AU  - E. P. Kubyshkin
TI  - Equations of Motion of a Rigid Body with Two Elastic Rods
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 66
EP  - 72
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a4/
LA  - ru
ID  - MAIS_2014_21_1_a4
ER  - 
%0 Journal Article
%A D. A. Eliseev
%A E. P. Kubyshkin
%T Equations of Motion of a Rigid Body with Two Elastic Rods
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 66-72
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a4/
%G ru
%F MAIS_2014_21_1_a4
D. A. Eliseev; E. P. Kubyshkin. Equations of Motion of a Rigid Body with Two Elastic Rods. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 66-72. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a4/

[1] L. D. Landau, E. M. Lifshitz, A Course of Theoretical Physics, v. 7, Theory of Elasticity, Pergamon Press, 1970 | MR | MR | Zbl

[2] Kubyshkin E. P., “Uravneniya dvizheniya odnoy mekhanicheskoy sistemy, modeliruyushchey dinamiku manipulyatsionnogo robota”, Matematika, kibernetika, informatika, Trudy mezhdunarodnoy nauchnoy konferentsii pamyati A. Yu. Levina, eds. S. A. Kaschenko, V. A. Sokolov, Yarosl. gos. un-t, Yaroslavl, 2008, 100–103 (in Russian)