On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 32-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considered are so-called finite-dimensional flutter systems, i.e. systems of ordinary differential equations, arising from Galerkin approximations of certain boundary value problems of aeroelasticity theory as well as from a number of radiophysics applications. We study small oscillations of these equations in case of $1:3$ resonance. By combining analytical and numerical methods, it is concluded that the mentioned resonance can cause a hard excitation of oscillations. Namely, for flutter systems shown is the possibility of coexistence, along with the stable zero state, of stable invariant tori of arbitrary finite dimension as well as chaotic attractors.
Keywords: nonlinear flutter systems, parametric external impact
Mots-clés : hard excitation of oscillations, invariant torus, chaos.
@article{MAIS_2014_21_1_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {On {One} {Means} of {Hard} {Excitation} of {Oscillations} in {Nonlinear} {Flutter} {Systems}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 32
EP  - 44
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a1/
LA  - ru
ID  - MAIS_2014_21_1_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 32-44
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a1/
%G ru
%F MAIS_2014_21_1_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. On One Means of Hard Excitation of Oscillations in Nonlinear Flutter Systems. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a1/

[1] V. V. Bolotin, Nonconservative problems of the theory of elastic stability, Elsevier Science Technology, 1963, 324 pp. | MR | MR

[2] Ja. G. Panovko, I. I. Gubanov, Stability and Oscillations of Elastic Systems. Paradoxes, Fallacies, and Concepts, Consultants Bureau, New York, 1965, 289 pp. | MR | MR | Zbl

[3] E. H. Dowell, Aeroelasticity of plates and shells. Mechanics: The Dynamical systems, Noordhoff International Publishing, Leyden, The Netherlands, 1975 | Zbl

[4] Filippov A. P., Kolebaniya deformiruyemykh system, Mashinostroyeniye, M., 1970 (in Russian)

[5] Vol'mir A. S., Ustoychivost' deformiruyemykh system, Nauka, M., 1967 (in Russian)

[6] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiyev, 1979 (in Russian) | Zbl

[7] P. J. Holmes, J. E. Marsden, “Bifurcations to divergence and flutter in flow-induced oscillations: a infinite-dimensional analysis”, Automatica, 14 (1978), 367–384 | DOI | MR | Zbl

[8] P. J. Holmes, “Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis”, J. of Sound and Vibration, 53:4 (1977), 471–503 | DOI | MR | Zbl

[9] A. Yu. Kolesov, Ye. F. Mishchenko, N. Kh. Rozov, “Resonance Dynamics of Nonlinear Flutter Systems”, Proceedings of the Steklov Institute of Mathematics, 261, 2008, 149–170 | DOI | MR | Zbl

[10] Mishchenko Ye. F., Sadovnichiy V. A., Kolesov A. Yu., Rozov N. Kh., Mnogolikiy khaos, Fizmatlit, M., 2012, in Russian pp.

[11] N. N. Bogolyubov, Yu. A. Mitropolski, Asymptotic methods in the theory of non-linear oscillations, Gordon and Breach, New York, 1961, 537 pp. | MR | Zbl

[12] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineynykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972, 240 pp. (in Russian) | MR

[13] Yakubovich V. A., Starzhinskiy V. M., Lineynyye differentsial'nyye uravneniya s periodicheskimi koeffitsiyentami i ikh prilozheniya, Nauka, M., 1972 (in Russian) | MR

[14] Kolesov A. Yu., Rozov N. Kh., Invariantnyye tory nelineynykh volnovykh uravneniy, Fizmatlit, M., 2004 (in Russian)

[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The mechanism of hard excitation of self-oscillations in the case of the resonance $1:2$”, Computational Mathematics and Mathematical Physics, 45:11 (2005), 1923–-1938 | MR | Zbl