Segmentation of Clinical Endoscopic Images Based on the Classification of Topological Vector Features
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 162-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we describe a prototype of an automatic segmentation system and annotation of endoscopy images. The used algorithm is based on the classification of vectors of the topological features of the original image. We use the image processing scheme which includes image preprocessing, calculation of vector descriptors defined for every point of the source image and the subsequent classification of descriptors. Image preprocessing includes finding and selecting artifacts and equalizating the image brightness. In this work, we give the detailed algorithm of the construction of topological descriptors and the classifier creating procedure based on mutual sharing the AdaBoost scheme and a naive Bayes classifier. In the final section, we show the results of the classification of real endoscopic images.
Keywords: endoscopic images, image processing, topological methods
Mots-clés : image segmentation.
@article{MAIS_2013_20_6_a14,
     author = {O. A. Dunaeva and D. B. Malkova and M. L. Machin and H. Edelsbrunner},
     title = {Segmentation of {Clinical} {Endoscopic} {Images} {Based} on the {Classification} of {Topological} {Vector} {Features}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {162--173},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a14/}
}
TY  - JOUR
AU  - O. A. Dunaeva
AU  - D. B. Malkova
AU  - M. L. Machin
AU  - H. Edelsbrunner
TI  - Segmentation of Clinical Endoscopic Images Based on the Classification of Topological Vector Features
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 162
EP  - 173
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a14/
LA  - ru
ID  - MAIS_2013_20_6_a14
ER  - 
%0 Journal Article
%A O. A. Dunaeva
%A D. B. Malkova
%A M. L. Machin
%A H. Edelsbrunner
%T Segmentation of Clinical Endoscopic Images Based on the Classification of Topological Vector Features
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 162-173
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a14/
%G ru
%F MAIS_2013_20_6_a14
O. A. Dunaeva; D. B. Malkova; M. L. Machin; H. Edelsbrunner. Segmentation of Clinical Endoscopic Images Based on the Classification of Topological Vector Features. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 6, pp. 162-173. http://geodesic.mathdoc.fr/item/MAIS_2013_20_6_a14/

[1] Kuvayev R. O., Kashin S. V., Kapranov V. A., Edel'sbrunner Kh., Myachin M. L., Dunayeva O. A., Rusakov A. I., “Novye komp'yuternye tekhnologii endoskopicheskoy diagnostiki v gastroenterologii i onkologii”, Dokazatel'naya gastroenterologiya, 2:1 (2013), 3–12 (in Russian)

[2] T. Stehle, R. Auer, S. Gross, A. Behrens, J. Wulff, T. Aach, R. Winograd, C. Trautwein, J. Tischendorf, “Classification of colon polyps in NBI endoscopy using vascularization features”, Medical Imaging 2009: Computer-Aided Diagnosis, eds. N. Karssemeijer, M. L. Giger, SPIE, 2009

[3] J. R. Munkres, Elements of Algebraic Topology, Perseus, Cambridge, Massachusetts, 1984 | MR

[4] H. Edelsbrunner, J. L. Harer, Computational Topology. An Introduction, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl

[5] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, Pennsylvania, 1983 | MR | Zbl

[6] P. F. Felzenszwalb, D. P. Huttenlocher, “Distance transforms of sampled functions”, Theory Comput., 8 (2012), 415–428 | DOI | MR | Zbl

[7] Y. Freund, R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application of boosting”, J. Comput. Sys. Sci., 55 (1997), 119–139 | DOI | MR | Zbl