On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 78-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, it is considered some questions of approximation solving of an optimal control problem for nonlinear partial pseudohyperbolic differential equations of the fifth order with initial-boundary value conditions and general view of the optimality criterion. Using the method of separation of variables in the form of a Fourier series reduces the generalized solution of the initial-boundary value problem to a countable system of nonlinear integral equations. By the aid of the methods of successive approximations and integral inequalities it is studied the one-value solvability of a finite system of nonlinear integral equations for the fixed values of the control, which are bounded by the given positive constant. It is estimated the permissible error with respect to a state of a “shorter” generalized solution of the initial-boundary value problem. Further, it is proved that the control sequence is a minimizing sequence for the considered problem.
Keywords: optimal control, generalized solvability, integral identity, approximate solution, functional minimization.
@article{MAIS_2013_20_5_a4,
     author = {T. K. Yuldashev},
     title = {On a {Problem} of {Optimal} {Control} for a {Nonlinear} {Pseudohyperbolic} {Equation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {78--89},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 78
EP  - 89
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/
LA  - ru
ID  - MAIS_2013_20_5_a4
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 78-89
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/
%G ru
%F MAIS_2013_20_5_a4
T. K. Yuldashev. On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 78-89. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/

[1] Aleksandrov V. M., Kovalenko E. V., Zadachi mehaniki sploshnyh sred so smeshannymi granichnymi usloviyami, Nauka, M., 1986 (in Russian) | MR

[2] Algazin S. D., Kiyko I. A., Flatter plastin i obolochek, Nauka, M., 2006 (in Russian)

[3] Evtushenko Yu. G., Metody resheniya ekstremalnyh zadach i ih primenenie v sistemah optimizatsii, Nauka, M., 1982 (in Russian) | MR | Zbl

[4] Fedorenko R. P., Priblijyonnoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 (in Russian) | MR | Zbl

[5] Butkovski A. G., Teoriya optimalnogo upravleniya sistemami s raspredelyonnymi parametrami, Nauka, M., 1965 (in Russian) | MR

[6] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelyonnymi parametrami, Vysshaya shkola, M., 2009 (in Russian)

[7] J. W. Strutt Lord Rayleigh, Theory of Sound, v. I, II, 2nd ed., MacMillan, London, 1896

[8] Yuldashev T. K., “O slaboy razreshimosti smeshannoy zadachi dlya nelineynogo psevdogiperbolicheskogo uravneniya”, Jurnal Srednevoljskogo matematicheskogo obshchestva, 14:4 (2012), 91–94 (in Russian)

[9] Yuldashev T. K., “Ob ustiychivosti po malym parametram resheniya smeshannoy zadachi dlya nelineynogo psevdogiperbolicheskogo uravneniya”, Jurnal Srednevoljskogo matematicheskogo obshchestva, 15:1 (2013), 134–142 (in Russian)

[10] Yuldashev T. K., “Smeshannaya zadacha dlya nelineynogo integro-differentsialnogo uravneniya, soderjashchego kub parabolicheskogo operatora”, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 2, 96–100 (in Russian)

[11] T. K. Yuldashev, “Mixed value problem for nonlinear differential equation of fourth order with small parameter on the parabolic operator”, Comput. Math. and Math. Physics, 51:9 (2011), 1596–1604 | DOI | MR | Zbl