On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 78-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, it is considered some questions of approximation solving of an optimal control problem for nonlinear partial pseudohyperbolic differential equations of the fifth order with initial-boundary value conditions and general view of the optimality criterion. Using the method of separation of variables in the form of a Fourier series reduces the generalized solution of the initial-boundary value problem to a countable system of nonlinear integral equations. By the aid of the methods of successive approximations and integral inequalities it is studied the one-value solvability of a finite system of nonlinear integral equations for the fixed values of the control, which are bounded by the given positive constant. It is estimated the permissible error with respect to a state of a “shorter” generalized solution of the initial-boundary value problem. Further, it is proved that the control sequence is a minimizing sequence for the considered problem.
Keywords: optimal control, generalized solvability, integral identity, approximate solution, functional minimization.
@article{MAIS_2013_20_5_a4,
     author = {T. K. Yuldashev},
     title = {On a {Problem} of {Optimal} {Control} for a {Nonlinear} {Pseudohyperbolic} {Equation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {78--89},
     year = {2013},
     volume = {20},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 78
EP  - 89
VL  - 20
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/
LA  - ru
ID  - MAIS_2013_20_5_a4
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 78-89
%V 20
%N 5
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/
%G ru
%F MAIS_2013_20_5_a4
T. K. Yuldashev. On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 78-89. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a4/

[1] Aleksandrov V. M., Kovalenko E. V., Zadachi mehaniki sploshnyh sred so smeshannymi granichnymi usloviyami, Nauka, M., 1986 (in Russian) | MR

[2] Algazin S. D., Kiyko I. A., Flatter plastin i obolochek, Nauka, M., 2006 (in Russian)

[3] Evtushenko Yu. G., Metody resheniya ekstremalnyh zadach i ih primenenie v sistemah optimizatsii, Nauka, M., 1982 (in Russian) | MR | Zbl

[4] Fedorenko R. P., Priblijyonnoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 (in Russian) | MR | Zbl

[5] Butkovski A. G., Teoriya optimalnogo upravleniya sistemami s raspredelyonnymi parametrami, Nauka, M., 1965 (in Russian) | MR

[6] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelyonnymi parametrami, Vysshaya shkola, M., 2009 (in Russian)

[7] J. W. Strutt Lord Rayleigh, Theory of Sound, v. I, II, 2nd ed., MacMillan, London, 1896

[8] Yuldashev T. K., “O slaboy razreshimosti smeshannoy zadachi dlya nelineynogo psevdogiperbolicheskogo uravneniya”, Jurnal Srednevoljskogo matematicheskogo obshchestva, 14:4 (2012), 91–94 (in Russian)

[9] Yuldashev T. K., “Ob ustiychivosti po malym parametram resheniya smeshannoy zadachi dlya nelineynogo psevdogiperbolicheskogo uravneniya”, Jurnal Srednevoljskogo matematicheskogo obshchestva, 15:1 (2013), 134–142 (in Russian)

[10] Yuldashev T. K., “Smeshannaya zadacha dlya nelineynogo integro-differentsialnogo uravneniya, soderjashchego kub parabolicheskogo operatora”, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 2, 96–100 (in Russian)

[11] T. K. Yuldashev, “Mixed value problem for nonlinear differential equation of fourth order with small parameter on the parabolic operator”, Comput. Math. and Math. Physics, 51:9 (2011), 1596–1604 | DOI | MR | Zbl