Statistical Characteristics of Control Systems, Arising in Various Models of Natural Sciences
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 62-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of extending the concept of invariance sets relative to control systems and differential inclusions. This expansion consists in studying statistically invariant sets and statistical characteristics of the attainability set of control systems. In this work, we obtain conditions for the statistical invariance and investigate the properties of the statistical characteristics of control systems with periodic coefficients. It is shown that the property of statistical invariancy is closely connected with the property of admissibility of periodic processes for linear control systems. The admissibility means that for any periodic control from the fixed set there exists a unique periodic solution which is in the given set of the phase space. The results of the work can be applied while finding the statistical characteristics arising in various models of biology, chemistry, economy.
Keywords: control systems, differential inclusions, invariant and statistically invariant sets.
@article{MAIS_2013_20_5_a3,
     author = {Y. Y. Larina and L. I. Rodina},
     title = {Statistical {Characteristics} of {Control} {Systems,} {Arising} in {Various} {Models} of {Natural} {Sciences}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {62--77},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a3/}
}
TY  - JOUR
AU  - Y. Y. Larina
AU  - L. I. Rodina
TI  - Statistical Characteristics of Control Systems, Arising in Various Models of Natural Sciences
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 62
EP  - 77
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a3/
LA  - ru
ID  - MAIS_2013_20_5_a3
ER  - 
%0 Journal Article
%A Y. Y. Larina
%A L. I. Rodina
%T Statistical Characteristics of Control Systems, Arising in Various Models of Natural Sciences
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 62-77
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a3/
%G ru
%F MAIS_2013_20_5_a3
Y. Y. Larina; L. I. Rodina. Statistical Characteristics of Control Systems, Arising in Various Models of Natural Sciences. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 62-77. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a3/

[1] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoy sistemy, nebluzhdaemost i minimalnyy tsentr prityazheniya”, Nelineynaya dinamika, 5:2 (2009), 265–288 (in Russian)

[2] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki, 2011, no. 1, 67–86 (in Russian)

[3] L. I. Rodina, “The space ${\mathrm{clcv}(\mathbb R^n)}$ with the Hausdorff–Bebutov metric and statistically invariant sets of control systems”, Proceedings of the Steklov Institute of Mathematics, 278:1 (2012), 208–217 | DOI | MR

[4] Rodina L. I., “Statisticheskie kharakteristiki mnozhestva dostizhimosti i periodicheskie protsessy upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki, 2012, no. 2, 34–43 (in Russian)

[5] Rodina L. I., “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izvestiya Instituta matematiki i informatiki UdGU, 2012, no. 2 (40), 3–164 (in Russian)

[6] Nedorezov L. V., Kurs lektsiy po matematicheskoy ekologii, Sibirskiy khronograf, Novosibirsk, 1997 (in Russian)

[7] Slinko M. G., Zelenyak T. I., Akramov T. A., Lavrentev M. M., Sheplev V. S., “Nelineynaya dinamika kataliticheskikh reaktsiy i protsessov (obzor)”, Matematicheskoe modelirovanie, 9:12 (1997), 87–109 (in Russian) | MR

[8] A. A. Davydov, V. I. Danchenko, M. Yu. Zvyagin, “Existence and uniqueness of a stationary distribution of a biological community”, Proceedings of the Steklov Institute of Mathematics, 267:1 (2009), 40–49 | DOI | MR | Zbl

[9] Prasolov A. V., Matematicheskie metody ekonomicheskoy dinamiki, Lan, SPb., 2008 (in Russian)

[10] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, v. 1, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2002 (in Russian)

[11] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Modeling and Analysis of Information Systems, 14:3 (2007), 29–42 (in Russian) | MR

[12] Kaschenko S. A., “Stationary states of delay differentional equation of insect population's dynamics”, Modeling and Analysis of Information Systems, 19:5 (2012), 18–34 (in Russian)

[13] Glyzin S. D., “Difference approximations of “reaction-diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)

[14] Nedorezov L. V., Utyupin Yu. V., “Diskretno-nepreryvnaya model dinamiki chislennosti dvupoloy populyatsii”, Sibirskiy matematicheskiy zhurnal, 44:3 (2003), 650–659 (in Russian) | MR | Zbl

[15] V. V. Petrova, E. L. Tonkov, “The admissibility of periodic processes and existence theorems for periodic solutions, I”, Izvestiya VUZ. Matematika, 40:11 (1996), 62–69 | MR | Zbl

[16] V. V. Petrova, E. L. Tonkov, “The admissibility of periodic processes and existence theorems for periodic solutions, II”, Izvestiya VUZ. Matematika, 41:6 (1997), 15–21 | MR | Zbl

[17] Demidovich B. P., Lektsii po matematicheskoy teorii ustoychivosti, Nauka, M., 1967 (in Russian) | MR

[18] Samoylenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeystviem, Vishcha shkola, Kiev, 1987 (in Russian)

[19] Zavalishchin S. T., Sesekin A. N., Impulsnye protsessy: Modeli i prilozheniya, Nauka, M., 1991 (in Russian) | MR

[20] Milman V. D., Myshkis A. D., “Ob ustoychivosti dvizheniya pri nalichii tolchkov”, Sibirskiy mat. zhurnal, 1960, no. 2, 233–237 (in Russian) | MR

[21] A. D. Myshkis, “Stability of solutions of differential equations under generalized pulse pertubations”, Automation and Remove Control, 68:10 (2007), 1844–1851 | DOI | MR | Zbl