Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_5_a2, author = {S. A. Kaschenko and E. V. Grigorieva}, title = {Local {Dynamics} of a {Laser} with {Rapidly} {Oscillating} {Parameters}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {45--61}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/} }
TY - JOUR AU - S. A. Kaschenko AU - E. V. Grigorieva TI - Local Dynamics of a Laser with Rapidly Oscillating Parameters JO - Modelirovanie i analiz informacionnyh sistem PY - 2013 SP - 45 EP - 61 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/ LA - ru ID - MAIS_2013_20_5_a2 ER -
S. A. Kaschenko; E. V. Grigorieva. Local Dynamics of a Laser with Rapidly Oscillating Parameters. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 45-61. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/
[1] K. Ikeda, K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback”, Physica D, 29 (1987), 223–235 | DOI | Zbl
[2] A. Kittel, K. Pyragas, R. Richter, “Prerecorded history of a system as an experimental tool to control chaos”, Phys. Rev. E, 50 (1994), 262–268 | DOI
[3] K. Pyragas, “Control of Chaos via an Unstable Delayed Feedback Controller”, Phys. Rev. Lett., 86:11, Mar. 12 (2001), 2265–2268 | DOI
[4] K. Pyragas, V. Pyragas, I. Z. Kiss, J. L. Hudson, “Stabilizing and Tracking Unknown Steady States of Dynamical Systems”, Phys. Rev. Lett., 89:24, Dec. 9 (2002), 244103 | DOI
[5] A. Ahlborn, U. Parlitz, “Controlling dynamical systems using multiple delay feedback control”, Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 72:1–2, Jul. (2005), 016206 | DOI | MR
[6] H. G. Schuster, M. P. Stemmler, “Control of chaos by oscillating feedback”, Phys. Rev. E, 56 (1997), 6410 | DOI
[7] A. Gjurchinovski, V. Urumov, “Stabilization of unstable steady states by variable-delay feedback control”, EPL, 84 (2008), 40013 http://www.epljournal.org | DOI
[8] A. Gjurchinovski, V. Urumov, “Variable-delay feedback control of unstable steady states in retarded time-delayed systems”, Physical Review E, 81 (2010), 016209 | DOI
[9] T. Jüngling, A. Gjurchinovski, V. Urumov, “Experimental time-delayed feedback control with variable and distributed delays”, Physical Review E, 86 (2012), 046213 | DOI
[10] A. Stephenson, “On a new type of dynamical stability”, Memoirs and Proceedings of the Manchester Literary and Philosophical Society, 52, no. 8, 1908, 1–10
[11] Bogolyubov N. N., “Teoriya vozmushcheniy v nelineynoy mekhanike”, Sbornik trudov in-ta stroitel'noy mekhaniki AN USSR, 14, no. 2, 1950, 9–34 (in Russian)
[12] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiyev, 1979, 162 pp. (in Russian) | Zbl
[13] A. V. Skripal, D. A. Usanov, V. A. Vagarin, M. Yu. Kalinkin, “Autodin detection by a semiconductor laser under moving external reflector”, Russian J. Tech. Physics, 69:1 (1999), 72–75
[14] T. Yang, C. W. Wu, L. O. Chua, “Cryptography based on chaotic systems”, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 44 (1997), 469–472 | DOI | Zbl
[15] J. P. Goedgebuer, L. Larger, H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode”, Phys. Rev. Lett., 80:2249 (1998)
[16] J.-L. Chern, K. Otsuka, “Coexistence of two attractors in lasers with delayed incoherent optical feedback”, Opt. Commun., 96 (1993), 259–266 | DOI
[17] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977 | MR | Zbl
[18] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979, 200 pp. | MR
[19] E. V. Grigorieva, S. A. Kaschenko, “Regular and chaotic pulsations in laser diode with delayed feedback”, Int. J. Bifurcation Chaos, 3 (1993), 1515–1528 | DOI | Zbl
[20] E. V. Grigorieva, “Instabilities of periodic orbits in lasers with oscillating delayed feedback”, Nonlinear Phenomena in Complex Systems, 4 (2001), 333–340
[21] J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback”, Phys. Rev. A, 54 (1996), 5386–5393 | DOI
[22] G. H. M. Tartwijk, D. Lenstra, “Semiconductor lasers with optical injection and feedback”, Quantum. Semiclass. Opt., 7 (1995), 87–143 | DOI
[23] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum. Electron., QE-16 (1980), 347–355 | DOI
[24] E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun., 165 (1999), 279–292 | DOI
[25] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with a long time delayed feedback”, Physica D, 145 (2000), 110–129 | DOI | MR | Zbl
[26] Mitropol'skiy Yu. A., Metod usredneniya v nelineynoy mekhanike, Naukova dumka, Kiyev, 1971 (in Russian) | MR
[27] Kaschenko S. A., Mayorov V. V., “Algoritm issledovaniya ustoychivosti resheniy lineynykh differentsial'nykh uravneniy s posledstviyem i bystro ostsilliruyushchimi pochti periodicheskimi koeffitsiyentami”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl', 1977, 70–82 (in Russian)
[28] Kaschenko S. A., “Issledovaniye ustoychivosti resheniy lineynykh parabolicheskikh uravneniy s blizkimi k postoyannym koeffitsiyentami i maloy diffuziyey”, Tr. seminara im. I. G. Petrovskogo, 15, 1991, 128–155 (in Russian)