Local Dynamics of a Laser with Rapidly Oscillating Parameters
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 45-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of class B lasers with the incoherent optical feedback formed by quickly vibrating external mirrors is viewed. The problem of the stability of equilibrium in a model system with rapidly oscillating coefficients is studied. The averaged system with the distributed delay is received. It is determined that in the presence of fast delay oscillation the limit of instability of a balance state moves towards significantly greater values of the feedback coefficient. The dependence of the shift with increasing the amplitude modulation has a band structure, so the rapid oscillations of delay can stabilize or destabilize the equilibrium. Normal forms which show changes of the sign of Lyapunov quantityalong border are constructed. They describe characteristics of periodic and quasiperiodic modes close to the balance state.
Keywords: laser dynamics, feedback, bifurcation analysis.
@article{MAIS_2013_20_5_a2,
     author = {S. A. Kaschenko and E. V. Grigorieva},
     title = {Local {Dynamics} of a {Laser} with {Rapidly} {Oscillating} {Parameters}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {45--61},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - E. V. Grigorieva
TI  - Local Dynamics of a Laser with Rapidly Oscillating Parameters
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 45
EP  - 61
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/
LA  - ru
ID  - MAIS_2013_20_5_a2
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A E. V. Grigorieva
%T Local Dynamics of a Laser with Rapidly Oscillating Parameters
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 45-61
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/
%G ru
%F MAIS_2013_20_5_a2
S. A. Kaschenko; E. V. Grigorieva. Local Dynamics of a Laser with Rapidly Oscillating Parameters. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 5, pp. 45-61. http://geodesic.mathdoc.fr/item/MAIS_2013_20_5_a2/

[1] K. Ikeda, K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback”, Physica D, 29 (1987), 223–235 | DOI | Zbl

[2] A. Kittel, K. Pyragas, R. Richter, “Prerecorded history of a system as an experimental tool to control chaos”, Phys. Rev. E, 50 (1994), 262–268 | DOI

[3] K. Pyragas, “Control of Chaos via an Unstable Delayed Feedback Controller”, Phys. Rev. Lett., 86:11, Mar. 12 (2001), 2265–2268 | DOI

[4] K. Pyragas, V. Pyragas, I. Z. Kiss, J. L. Hudson, “Stabilizing and Tracking Unknown Steady States of Dynamical Systems”, Phys. Rev. Lett., 89:24, Dec. 9 (2002), 244103 | DOI

[5] A. Ahlborn, U. Parlitz, “Controlling dynamical systems using multiple delay feedback control”, Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 72:1–2, Jul. (2005), 016206 | DOI | MR

[6] H. G. Schuster, M. P. Stemmler, “Control of chaos by oscillating feedback”, Phys. Rev. E, 56 (1997), 6410 | DOI

[7] A. Gjurchinovski, V. Urumov, “Stabilization of unstable steady states by variable-delay feedback control”, EPL, 84 (2008), 40013 http://www.epljournal.org | DOI

[8] A. Gjurchinovski, V. Urumov, “Variable-delay feedback control of unstable steady states in retarded time-delayed systems”, Physical Review E, 81 (2010), 016209 | DOI

[9] T. Jüngling, A. Gjurchinovski, V. Urumov, “Experimental time-delayed feedback control with variable and distributed delays”, Physical Review E, 86 (2012), 046213 | DOI

[10] A. Stephenson, “On a new type of dynamical stability”, Memoirs and Proceedings of the Manchester Literary and Philosophical Society, 52, no. 8, 1908, 1–10

[11] Bogolyubov N. N., “Teoriya vozmushcheniy v nelineynoy mekhanike”, Sbornik trudov in-ta stroitel'noy mekhaniki AN USSR, 14, no. 2, 1950, 9–34 (in Russian)

[12] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiyev, 1979, 162 pp. (in Russian) | Zbl

[13] A. V. Skripal, D. A. Usanov, V. A. Vagarin, M. Yu. Kalinkin, “Autodin detection by a semiconductor laser under moving external reflector”, Russian J. Tech. Physics, 69:1 (1999), 72–75

[14] T. Yang, C. W. Wu, L. O. Chua, “Cryptography based on chaotic systems”, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 44 (1997), 469–472 | DOI | Zbl

[15] J. P. Goedgebuer, L. Larger, H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode”, Phys. Rev. Lett., 80:2249 (1998)

[16] J.-L. Chern, K. Otsuka, “Coexistence of two attractors in lasers with delayed incoherent optical feedback”, Opt. Commun., 96 (1993), 259–266 | DOI

[17] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977 | MR | Zbl

[18] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979, 200 pp. | MR

[19] E. V. Grigorieva, S. A. Kaschenko, “Regular and chaotic pulsations in laser diode with delayed feedback”, Int. J. Bifurcation Chaos, 3 (1993), 1515–1528 | DOI | Zbl

[20] E. V. Grigorieva, “Instabilities of periodic orbits in lasers with oscillating delayed feedback”, Nonlinear Phenomena in Complex Systems, 4 (2001), 333–340

[21] J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback”, Phys. Rev. A, 54 (1996), 5386–5393 | DOI

[22] G. H. M. Tartwijk, D. Lenstra, “Semiconductor lasers with optical injection and feedback”, Quantum. Semiclass. Opt., 7 (1995), 87–143 | DOI

[23] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum. Electron., QE-16 (1980), 347–355 | DOI

[24] E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun., 165 (1999), 279–292 | DOI

[25] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with a long time delayed feedback”, Physica D, 145 (2000), 110–129 | DOI | MR | Zbl

[26] Mitropol'skiy Yu. A., Metod usredneniya v nelineynoy mekhanike, Naukova dumka, Kiyev, 1971 (in Russian) | MR

[27] Kaschenko S. A., Mayorov V. V., “Algoritm issledovaniya ustoychivosti resheniy lineynykh differentsial'nykh uravneniy s posledstviyem i bystro ostsilliruyushchimi pochti periodicheskimi koeffitsiyentami”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl', 1977, 70–82 (in Russian)

[28] Kaschenko S. A., “Issledovaniye ustoychivosti resheniy lineynykh parabolicheskikh uravneniy s blizkimi k postoyannym koeffitsiyentami i maloy diffuziyey”, Tr. seminara im. I. G. Petrovskogo, 15, 1991, 128–155 (in Russian)