On Delaunay’s Theorem Classifying Coincidences of Parallelohedra at Faces of Codimension~3
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 4, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1929 B. N. Delaunay obtained the complete classification of all possible combinatorial coincidence types of parallelohedra at their faces of codimension 3. It appeared that every such coincidence is dual to one of the following five three-dimensional polytopes: a tetrahedron, a quadrangular pyramid, an octahedron, a triangular prism, or a parallelepiped. The present paper contains a new combinatorial proof of this result based on Euler formula. Using the classification, we have obtained several further properties of faces of codimension 3 in parallelohedral tilings. For instance, we showed that the Dimension Conjecture holds for faces of codimension 3, i.e. if we take the affine hull of centers of all parallelohedra containing a particular face of codimension 3, this affine hull is three-dimensional. Finally, we proved that the set of centers of all parallelohedra sharing a face of codimension 3 spans a three-dimensional sublattice of index one.
Mots-clés : parallelohedron
Keywords: lattice tiling, dual cell.
@article{MAIS_2013_20_4_a4,
     author = {A. N. Magazinov},
     title = {On {Delaunay{\textquoteright}s} {Theorem} {Classifying} {Coincidences} of {Parallelohedra} at {Faces} of {Codimension~3}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a4/}
}
TY  - JOUR
AU  - A. N. Magazinov
TI  - On Delaunay’s Theorem Classifying Coincidences of Parallelohedra at Faces of Codimension~3
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 71
EP  - 80
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a4/
LA  - ru
ID  - MAIS_2013_20_4_a4
ER  - 
%0 Journal Article
%A A. N. Magazinov
%T On Delaunay’s Theorem Classifying Coincidences of Parallelohedra at Faces of Codimension~3
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 71-80
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a4/
%G ru
%F MAIS_2013_20_4_a4
A. N. Magazinov. On Delaunay’s Theorem Classifying Coincidences of Parallelohedra at Faces of Codimension~3. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 4, pp. 71-80. http://geodesic.mathdoc.fr/item/MAIS_2013_20_4_a4/

[1] Venkov B. A., “Ob odnom klasse evklidovykh mnogogrannikov”, Vestnik Leningradskogo Universiteta. Ser. mat., fiz., khim., 2 (1954), 11–31 (in Russian) | MR

[2] N. P. Dolbilin, “Properties of Faces of Parallelohedra”, Proc. Steklov Inst. Math., 266 (2009), 105–119 | DOI | MR | Zbl

[3] N. P. Dolbilin, “Parallelohedra: A retrospective and new results”, Trans. Moscow Math. Soc., 73 (2012), 207–220 | DOI | Zbl

[4] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoy topologii, Nauka, M., 1989 (in Russian) | MR

[5] L. Danzer, B. Grünbaum, “Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee”, Math. Z., 79 (1962), 95–99 | DOI | MR | Zbl

[6] B. N. Delaunay, “Sur la partition régulière de l'espace à 4 dimensions”, Izv. Acad. sci. of the USSR. Ser. VII. Sect. of phys. and math. sci., 1 (1929), 79–110 ; 2, 147–164 | Zbl

[7] M. Dutour, “The six-dimensional Delaunay polytopes”, European Journal of Combinatorics, 25 (2004), 535–548 | DOI | MR | Zbl

[8] H. Minkowski, “Allgemeine Lehrsätze über die konvexe Polyeder”, Nach. Ges. Wiss. Göttingen, 1897, 198–219 | Zbl

[9] A. Ordine, Proof of the Voronoi conjecture on parallelotopes in a new special case, Ph.D. Thesis, Queen's University, Ontario, 2005 | MR

[10] S. S. Ryshkov, K. A. Rybnikov (Jr.), “The theory of quality translations with applications to tilings”, European Journal of Combinatorics, 18 (1997), 431–444 | DOI | MR | Zbl

[11] G. Voronoi, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les paralléloèdres primitifs”, J. Reine Angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–178 ; G. F. Voronoi, “Issledovaniya o primitivnykh paralleloedrakh”, Sobr. soch., v. 2, Izd-vo AN USSR, Kiev, 1952, 239–368 | Zbl | Zbl

[12] O. K. Zitomirskij, “Verschärfung eines Satzes von Woronoi”, J. Leningrad. Fiz.-Mat. Ob-va, 2 (1929), 131–151 | Zbl