Some Solvability Classes for the Problem of Integer Balancing of a Three-Dimensional Matrix with Constraints of Second Type
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 54-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of integer balancing of a three-dimensional matrix with constraints of second type is studied. The elements of the inner part (all three indices are greater than zero) of the three-dimensional matrix are summed in each direction and each section of the matrix; the total sum is also found. These sums are placed into the elements where one or more indices are equal to zero (according to the summing directions). The problem is to find an integer matrix of the same structure, which can be produced from the initial one by replacing the elements of the inner part with the largest previous or the smallest following integer. At the same time variations of the sums of elements from that in the initial matrix should be less than 2 and the element with three zero indices should be produced with standard rules of rounding-off. Some solvability classes for this problem are defined. Also, a model of reducing this problem to a problem of finding the maximum flow in a multiple network and an algorithm for the corresponding flow problem are suggested. A polynomial algorithm for the particular case of $n=2$ is described.
Keywords: integer balancing, three-dimensional matrices, constraints of second type, solvability classes, multiple networks, multiple flows, generalized labeling algorithm.
@article{MAIS_2013_20_2_a3,
     author = {A. V. Smirnov},
     title = {Some {Solvability} {Classes} for the {Problem} of {Integer} {Balancing} of a {Three-Dimensional} {Matrix} with {Constraints} of {Second} {Type}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a3/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - Some Solvability Classes for the Problem of Integer Balancing of a Three-Dimensional Matrix with Constraints of Second Type
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 54
EP  - 69
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a3/
LA  - ru
ID  - MAIS_2013_20_2_a3
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T Some Solvability Classes for the Problem of Integer Balancing of a Three-Dimensional Matrix with Constraints of Second Type
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 54-69
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a3/
%G ru
%F MAIS_2013_20_2_a3
A. V. Smirnov. Some Solvability Classes for the Problem of Integer Balancing of a Three-Dimensional Matrix with Constraints of Second Type. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 54-69. http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a3/

[1] V. S. Roublev, A. V. Smirnov, “$NP$-Completeness of the Integer Balancing Problem for a Three-Dimensional Matrix”, Doklady Mathematics, 82 (2010), 912–914 | DOI | MR | Zbl

[2] V. S. Roublev, A. V. Smirnov, “The Problem of Integer-Valued Balancing of a Three-Dimensional Matrix and Algorithms of Its Solution”, MAIS, 17:2 (2010), 72–98 (in Russian)

[3] A. V. Smirnov, “The Problem of Integer-valued Balancing of a Three-dimensional Matrix and Network Model”, MAIS, 16:3 (2010), 70–76 (in Russian)

[4] A. V. Smirnov, “Zadacha tselochislennogo sbalansirovaniya tryokhmernoy matritsy s ogranicheniyami vtorogo roda”, Modelirovanie i analiz informatsionnykh sistem, Trudy mezhdunarodnoy nauchnoy konferentsii, posvyashchyonnoy 35-letiyu matematicheskogo fakulteta i 25-letiyu fakulteta informatiki i vychislitelnoy tekhniki Yaroslavskogo gosudarstvennogo universiteta im. P. G. Demidova, YarGU, Yaroslavl, 2012, 164–167 (in Russian)

[5] A. S. Kondakov, V. S. Roublev, “Zadacha sbalansirovaniya matritsy plana”, Doklady Odesskogo seminara po diskretnoy matematike, Astroprint, Odessa, 2005, 24–26 (in Russian)

[6] N. M. Korshunova, V. S. Roublev, “Zadacha tselochislennogo sbalansirovaniya matritsy”, Sovremennye problemy matematiki i informatiki, 3, YarGU, Yaroslavl, 2000, 145–150 (in Russian)

[7] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962, 194 pp. | MR | Zbl | Zbl

[8] V. S. Rublev, A. V. Smirnov, “Flows in Multiple Networks”, Yaroslavsky Pedagogichesky Vestnik, 3:2 (2011), 60–68 (in Russian)