Algorithm for Efficient Entropy Estimation
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 178-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the nonparametric entropy estimation of a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space $\Omega = A^{\mathbb{N}}$ of right-sided infinite sequences drawn from a finite alphabet $A$. The new metric has a parameter which is a non-increasing function. We apply this metrics to nearest-neighbor entropy estimators. We prove that, under certain conditions, the estimators has a small variance. We show that a special selection of the metric parameters reduction of the estimator's bias. The article is published in the author's wording.
Keywords: entropy, nonparametric statistic, metric, ball, Bernoulli’s measure.
@article{MAIS_2013_20_2_a13,
     author = {E. A. Timofeev},
     title = {Algorithm for {Efficient} {Entropy} {Estimation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {178--185},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a13/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Algorithm for Efficient Entropy Estimation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 178
EP  - 185
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a13/
LA  - en
ID  - MAIS_2013_20_2_a13
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Algorithm for Efficient Entropy Estimation
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 178-185
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a13/
%G en
%F MAIS_2013_20_2_a13
E. A. Timofeev. Algorithm for Efficient Entropy Estimation. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 2, pp. 178-185. http://geodesic.mathdoc.fr/item/MAIS_2013_20_2_a13/

[1] M. Deza, T. Deza, Encyclopedia of Distances, Springer, 2009 | MR

[2] A. Kaltchenko, N. Timofeeva, “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13 | DOI | MR | Zbl

[3] M. J. Silvapulle, P. K. Sen, Constrained statistical inference: Inequality, order and shape restrictions, John Wiley Sons, USA, 2005 | MR | Zbl

[4] E. A. Timofeev, “Statistical Estimation of measure invariants”, St. Petersburg Math. J., 17:3 (2006), 527–551 | DOI | MR | Zbl

[5] I. S. Gradshteyn, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedeniy, Nauka, M., 1971