Deformations of Planar Equilateral Polygons with a Constant Index
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 138-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

A carpenter’s rule problem is considered for the case of a self-intersecting planar polygon with additional restriction: the index (turning number) of the polygon should be preserved during deformation. We present a solution for equilateral polygons and state a problem for general ones.
Keywords: planar polygons, bar linkages, carpenter’s rule problem.
@article{MAIS_2013_20_1_a9,
     author = {E. S. Zaputryaeva},
     title = {Deformations of {Planar} {Equilateral} {Polygons} with a {Constant} {Index}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {138--159},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a9/}
}
TY  - JOUR
AU  - E. S. Zaputryaeva
TI  - Deformations of Planar Equilateral Polygons with a Constant Index
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 138
EP  - 159
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a9/
LA  - ru
ID  - MAIS_2013_20_1_a9
ER  - 
%0 Journal Article
%A E. S. Zaputryaeva
%T Deformations of Planar Equilateral Polygons with a Constant Index
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 138-159
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a9/
%G ru
%F MAIS_2013_20_1_a9
E. S. Zaputryaeva. Deformations of Planar Equilateral Polygons with a Constant Index. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 138-159. http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a9/

[1] R. Connelly, E. Demaine, G. Rote, “Straightening polygonal arcs and convexifying polygonal cycles”, Discrete and Computational Geometry, 30:2 (2003), 205–239 | DOI | MR | Zbl

[2] W. J. Lenhart, S. Whitesides, “Reconfiguring closed polygonal chains in Euclidian d-space”, Discrete and Computational Geometry, 13 (1995), 123–140 | DOI | MR | Zbl

[3] I. Streinu, “A combinatorial approach to planar non-colliding robot arm motion planning”, ACM/IEEE Symposium on Foundations of Computer Science (2000), 443–453 | MR

[4] I. Kh. Sabitov, Chemu ravna summa uglov mnogougol'nika?, KVANT, 2001, no. 3, 7–12 (in Russian)

[5] I. Kh. Sabitov, “Around the Proof of the Legendre–Cauchy Lemma on Convex Polygons”, Siberian Mathematical Journal, 45:4 (2004), 740–762 | DOI | MR | Zbl