On the Root-Class Residuallity of Generalized Free Products
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 133-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal{K}$ be a root class of groups. It is proved that a free product of any family of residually $\mathcal{K}$ groups with one amalgamated subgroup, which is a retract in all free factors, is residually $\mathcal{K}$. The sufficient condition for a generalized free product of two groups to be residually $\mathcal{K}$ is also obtained, provided that the amalgamated subgroup is normal in one of the free factors and is a retract in another.
Keywords:
free product with one amalgamated subgroup, root class of groups, root-class residuallity
Mots-clés : retract.
Mots-clés : retract.
@article{MAIS_2013_20_1_a8,
author = {E. A. Tumanova},
title = {On the {Root-Class} {Residuallity} of {Generalized} {Free} {Products}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {133--137},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a8/}
}
E. A. Tumanova. On the Root-Class Residuallity of Generalized Free Products. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 133-137. http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a8/