On the Root-Class Residuallity of Generalized Free Products
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 133-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{K}$ be a root class of groups. It is proved that a free product of any family of residually $\mathcal{K}$ groups with one amalgamated subgroup, which is a retract in all free factors, is residually $\mathcal{K}$. The sufficient condition for a generalized free product of two groups to be residually $\mathcal{K}$ is also obtained, provided that the amalgamated subgroup is normal in one of the free factors and is a retract in another.
Keywords: free product with one amalgamated subgroup, root class of groups, root-class residuallity
Mots-clés : retract.
@article{MAIS_2013_20_1_a8,
     author = {E. A. Tumanova},
     title = {On the {Root-Class} {Residuallity} of {Generalized} {Free} {Products}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a8/}
}
TY  - JOUR
AU  - E. A. Tumanova
TI  - On the Root-Class Residuallity of Generalized Free Products
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 133
EP  - 137
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a8/
LA  - ru
ID  - MAIS_2013_20_1_a8
ER  - 
%0 Journal Article
%A E. A. Tumanova
%T On the Root-Class Residuallity of Generalized Free Products
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 133-137
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a8/
%G ru
%F MAIS_2013_20_1_a8
E. A. Tumanova. On the Root-Class Residuallity of Generalized Free Products. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 133-137. http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a8/

[1] P. A. Bobrovskii, E. V. Sokolov, “The cyclic subgroup separability of certain generalized free products of two groups”, Algebra Colloquium, 17:4 (2010), 577–582 | MR | Zbl

[2] J. Boler, B. Evans, “The free product of residually finite groups amalgamated along retracts is residually finite”, Proc. Amer. Math. Soc., 37:1 (1973), 50–52 | DOI | MR | Zbl

[3] K. W. Grunberg, “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR

[4] B. H. Neumann, “An assay on free products of groups with amalgamations”, Phil. Trans. Royal Soc. of London, 246 (1954), 503–554 | MR | Zbl

[5] D. N. Azarov, E. A. Tumanova, “Ob approksimiruyemosti obobshchennykh svobodnykh proizvedeniy grupp kornevymi klassami”, Nauchnyye trudy Ivan. gos. un-ta. Matematika, 6 (2008), 29–42 (in Russian)