On the Residual Finiteness of Some Generalized Products of Soluble Groups of Finite Rank
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 124-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a free product of residually finite virtually soluble groups $A$ and $B$ of finite rank with an amalgamated subgroup $H$, $H \not= A$ and $H \not= B$. And let $H$ contains a subgroup $W$ of finite index which is normal in both $A$ and $B$. We prove that the group $G$ is residually finite if and only if the subgroup $H$ is finitely separable in $A$ and $B$. Also we prove that if all subgroups of $A$ and $B$ are finitely separable in $A$ and $B$, respectively, all finitely generated subgroups of $G$ are finitely separable in $G$.
Keywords: soluble group of finite rank, generalized free product, residually finite group, finitely separable subgroup.
@article{MAIS_2013_20_1_a7,
     author = {A. V. Rozov},
     title = {On the {Residual} {Finiteness} of {Some} {Generalized} {Products} of {Soluble} {Groups} of {Finite} {Rank}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {124--132},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a7/}
}
TY  - JOUR
AU  - A. V. Rozov
TI  - On the Residual Finiteness of Some Generalized Products of Soluble Groups of Finite Rank
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 124
EP  - 132
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a7/
LA  - ru
ID  - MAIS_2013_20_1_a7
ER  - 
%0 Journal Article
%A A. V. Rozov
%T On the Residual Finiteness of Some Generalized Products of Soluble Groups of Finite Rank
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 124-132
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a7/
%G ru
%F MAIS_2013_20_1_a7
A. V. Rozov. On the Residual Finiteness of Some Generalized Products of Soluble Groups of Finite Rank. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 124-132. http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a7/

[1] G. Baumslag, “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl

[2] K. A. Hirsh, “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR

[3] D. N. Azarov, “O finitnoy approksimiruyemosti svobodnogo proizvedeniya dvukh grupp s ob"yedinennymi podgruppami konechnykh indeksov”, Vestn. Ivan. gos. un-ta, 3 (2007), 55–59 (in Russian)

[4] D. N. Azarov, “O pochti approksimiruyemosti konechnymi $p$-gruppami”, Chebyshevskiy sbornik, 11:3(35) (2010), 11–21 (in Russian)

[5] R. B. J. T. Allenby, R. J. Gregorac, “On locally extended residually finite groups”, Lecture Notes Math., 319, 1973, 9–17 | DOI | MR | Zbl

[6] A. I. Maltsev, “On groups of finite rank”, Mat. Sbornik, 22:2 (1948), 351–352 (in Russian)

[7] J. Lennox, D. Robinson, The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[8] A. I. Maltsev, “O gomomorfizmakh na konechnyye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18 (1958), 49–60 (in Russian)

[9] M. A Shirvani, “A converse to a residual finiteness theorem of G. Baumslag”, Proc. Amer. Math. Soc., 104:3 (1988), 703–706 | DOI | MR | Zbl