Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2013_20_1_a5, author = {E. A. Timofeev}, title = {Unbiased {Entropy} {Estimator} for {Binary} {Sequences}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {107--115}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a5/} }
E. A. Timofeev. Unbiased Entropy Estimator for Binary Sequences. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 107-115. http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a5/
[1] M. Deza, T. Deza, Encyclopedia of Distances, Springer, 2009 | MR
[2] P. Grassberger, “Estimating the information content of symbol sequences and efficient codes”, IEEE Trans. Inform. Theory, 35 (1989), 669–675 | DOI | MR
[3] A. Kaltchenko, N. Timofeeva, “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13 | DOI | MR | Zbl
[4] A. Kaltchenko, N. Timofeeva, “Rate of convergence of the nearest neighbor entropy estimator”, AEU — International Journal of Electronics and Communications, 64:1 (2010), 75–79 | DOI
[5] E. A. Timofeev, “Statistical Estimation of measure invariants”, St. Petersburg Math. J., 17:3 (2006), 527–551 | DOI | MR | Zbl
[6] E. A. Timofeev, “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269 | DOI | MR