Quasinormal Forms for Lang--Kobayashi Equations with a Large Control Coefficient
Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a model of single-mode semiconductor laser with the optical feedback. This model bases on DDE (Lang–Kobayashi model). With the help of local analysis methods we built a continuous set of quasinormal forms in the neighbourhood of critical values. The ability of coexistence of a large number of steady oscillating states is discussed.
Keywords: Lang–Kobayashi equation, large control
Mots-clés : quasinormal form.
@article{MAIS_2013_20_1_a1,
     author = {E. V. Grigorieva and I. S. Kashchenko and S. A. Kashchenko},
     title = {Quasinormal {Forms} for {Lang--Kobayashi} {Equations} with a {Large} {Control} {Coefficient}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a1/}
}
TY  - JOUR
AU  - E. V. Grigorieva
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Quasinormal Forms for Lang--Kobayashi Equations with a Large Control Coefficient
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2013
SP  - 18
EP  - 29
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a1/
LA  - ru
ID  - MAIS_2013_20_1_a1
ER  - 
%0 Journal Article
%A E. V. Grigorieva
%A I. S. Kashchenko
%A S. A. Kashchenko
%T Quasinormal Forms for Lang--Kobayashi Equations with a Large Control Coefficient
%J Modelirovanie i analiz informacionnyh sistem
%D 2013
%P 18-29
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a1/
%G ru
%F MAIS_2013_20_1_a1
E. V. Grigorieva; I. S. Kashchenko; S. A. Kashchenko. Quasinormal Forms for Lang--Kobayashi Equations with a Large Control Coefficient. Modelirovanie i analiz informacionnyh sistem, Tome 20 (2013) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/MAIS_2013_20_1_a1/

[1] J. Mork, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment”, IEEE J. Quant. Electr., 28 (1992), 93–108 | DOI

[2] G. Tartwijk, D. Lenstra, “Semiconductor lasers with optical injection and feedback”, Quantum. Semiclass. Opt., 7 (1995), 87–143 | DOI

[3] J. Ye, H. Li, J. M. McInerny, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback”, Phys. Rev. A, 47 (1993), 2249–2252 | DOI

[4] I. Fischer, O. Hess, W. Elsasser, E. Gobel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser”, Phys. Rev. Lett., 73 (1994), 2188–2191 | DOI

[5] T. Sano, “Antimode dynamics and chaotic itinerancy in the coherent collapse of semiconductor lasers with optical feedback”, Phys. Rev. A, 50 (1994), 2719–2726 | DOI

[6] A. Ritter, H. Haug, “Theory of laser diodes with weak optical feedback. I: Small-signal analysis and side-mode spectra”, JOSA B, 10 (1993), 130–144 | DOI

[7] A. Ritter, H. Haug, “Theory of laser diodes with weak optical feedback. II: Limit-cycle behavior, quasi-periodicity, frequency locking, and route to chaos”, JOSA B, 10 (1993), 145–154 | DOI

[8] G. Huyet, S. Balle, M. Giudici, C. Green. G. Giacomelli, J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback”, Opt. Commun., 149 (1999), 341–347 | DOI

[9] E. V. Grigorieva, “Quasiperiodicity in Lang-Kobayashi model of lasers with delayed optical feedback”, Nonlinear Phenomena in Complex Systems, 4 (2001), 333–340

[10] A. M. Levine, G. H. M. Tartwijk, D. Lenstra, T. Erneux, “Diode lasers with optical feedback: Stability of the maximum gain mode”, Phys. Rev. A, 52 (1995), R3436–R3439 | DOI

[11] K. Green, “Stability near threshold in a semiconductor laser subject to optical feedback: A bifurcation analysis of the Lang-Kobayashi equations”, Phys. Rev. E, 79 (2009), 036210 | DOI | MR

[12] A. A. Tager, K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes”, IEEE J. Quantum Electron., 30:7 (1994), 1553–1561 | DOI

[13] T. Erneux, A. Gavrielides, M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback”, Phys. Rev. A, 66 (2002), 033809 | DOI

[14] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum. Electron., 16 (1980), 347–355 | DOI

[15] I. S. Kashchenko, “Dynamics of an Equation with a Large Coefficient of Delay Control”, Doklady Mathematics, 83:2 (2011), 258–261, ISSN 1064-5624 | DOI | MR | Zbl

[16] A. B. Vasilyeva, V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, M., 1973 | MR

[17] T. Heil, I. Fischer, W. Elsasser, “Influence of amplitude-phase coupling on the dynamics of semiconductor lasers subject to optical feedback”, Phys. Rev. A, 60 (1999), 634–640 | DOI

[18] I. S. Kashchenko, “Local Dynamics of Equations with Large Delay”, Computational Mathematics and Mathematical Physics, 48:12 (2008), 2172–2181 | DOI | MR

[19] C. Masoller, N. B. Abraham, “Stability and dynamical properties of the coexisting attractors of an external-cavity semiconductor laser”, Phys. Rev. A, 57 (1998), 1313–1322 | DOI