Polyhedral Graphs of GRAPH PARTITIONING and COMPLETE BIPARTITE SUBGRAPH Problems
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 101-106
Cet article a éte moissonné depuis la source Math-Net.Ru
We provide an effective description of graphs of polyhedra for GRAPH PARTITIONING and COMPLETE BIPARTITE SUBGRAPH problems. We establish the fact, that the clique number for each of this problems increases exponentially with the dimension of the space.
Keywords:
polyhedra of combinatorial problems, adjacency of vertices, clique number of graph of polyhedron.
@article{MAIS_2012_19_6_a8,
author = {A. I. Antonov and V. A. Bondarenko},
title = {Polyhedral {Graphs} of {GRAPH} {PARTITIONING} and {COMPLETE} {BIPARTITE} {SUBGRAPH} {Problems}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {101--106},
year = {2012},
volume = {19},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a8/}
}
TY - JOUR AU - A. I. Antonov AU - V. A. Bondarenko TI - Polyhedral Graphs of GRAPH PARTITIONING and COMPLETE BIPARTITE SUBGRAPH Problems JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 101 EP - 106 VL - 19 IS - 6 UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a8/ LA - ru ID - MAIS_2012_19_6_a8 ER -
A. I. Antonov; V. A. Bondarenko. Polyhedral Graphs of GRAPH PARTITIONING and COMPLETE BIPARTITE SUBGRAPH Problems. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 101-106. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a8/
[1] V. A. Bondarenko, A. N. Maksimenko, Geometricheskie konstruktsii i slozhnost v kombinatornoi optimizatsii, LKI, M., 2008, 184 pp.
[2] M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR