A New Proof of the Euler Formula
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 170-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is a new proof of the Euler formula for a convex polyhedron in $\mathbb R^3$.
Keywords: angle, polyhedron
Mots-clés : polygon, Euler formula.
@article{MAIS_2012_19_6_a16,
     author = {M. I. Shtogrin},
     title = {A {New} {Proof} of the {Euler} {Formula}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {170--172},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a16/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - A New Proof of the Euler Formula
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 170
EP  - 172
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a16/
LA  - ru
ID  - MAIS_2012_19_6_a16
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T A New Proof of the Euler Formula
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 170-172
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a16/
%G ru
%F MAIS_2012_19_6_a16
M. I. Shtogrin. A New Proof of the Euler Formula. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 170-172. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a16/

[1] L. Euler, “Solutio problematis ad geometrian situs pertinentis”, Comment. Academiae Sci. I. Petropolitanae, 8, 1736, 128–140; Opera Omnia Series, 1–7 (1766), 1–10