Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 161-169
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that for each simplicial polyhedron $P$ in 3-space there exists a monic polynomial $Q$ depending on the combinatorial structure of $P$ and the lengths of its edges only such that the volume of the polyhedron $P$ as well as one of any polyhedron isometric to $P$ and with the same combinatorial structure are roots of the polynomial $Q$. But this polynomial contains many millions of terms and it cannot be presented in an explicit form. In this work we indicate some special classes of polyhedra for which these polynomials can be found by a sufficiently effective algorithm which also works in spaces of constsnt curvature of any dimension.
Keywords:
polyhedra, metrics, pyramids, polynomials.
Mots-clés : volumes
Mots-clés : volumes
@article{MAIS_2012_19_6_a15,
author = {D. I. Sabitov and I. Kh. Sabitov},
title = {Volume {Polynomials} for {Some} {Polyhedra} in {Spaces} of {Constant} {Curvature}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {161--169},
year = {2012},
volume = {19},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a15/}
}
TY - JOUR AU - D. I. Sabitov AU - I. Kh. Sabitov TI - Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 161 EP - 169 VL - 19 IS - 6 UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a15/ LA - ru ID - MAIS_2012_19_6_a15 ER -
D. I. Sabitov; I. Kh. Sabitov. Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 161-169. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a15/
[1] I. Kh. Sabitov, Ob'emy mnogogrannikov, Izd-vo MTsNMO, M., 2009
[2] I. Kh. Sabitov, “Ob'em mnogogrannika kak funktsiya ego metriki”, Fundamentalnaya i prikladnaya matematika, 2:4 (1996), 1235–1246 | MR | Zbl
[3] R. Connelly, I. Sabitov, A. Walz, “The Bellows Conjecture”, Beiträge zur Algebra und Geometrie, 38:1 (1997), 1–10 | MR | Zbl
[4] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1981 | MR