Fractal and Computational Geometry for Generalizing Cartographic Objects
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 152-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an algorithm for simplifying linear cartographic objects and results obtained with a computer program implementing this algorithm.
Keywords: cartographic generalization, curvature
Mots-clés : segmentation, fractal dimension.
@article{MAIS_2012_19_6_a14,
     author = {O. R. Musin and A. U. Ukhalov and H. Edelsbrunner and O. P. Yakimova},
     title = {Fractal and {Computational} {Geometry} for {Generalizing} {Cartographic} {Objects}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {152--160},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a14/}
}
TY  - JOUR
AU  - O. R. Musin
AU  - A. U. Ukhalov
AU  - H. Edelsbrunner
AU  - O. P. Yakimova
TI  - Fractal and Computational Geometry for Generalizing Cartographic Objects
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 152
EP  - 160
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a14/
LA  - ru
ID  - MAIS_2012_19_6_a14
ER  - 
%0 Journal Article
%A O. R. Musin
%A A. U. Ukhalov
%A H. Edelsbrunner
%A O. P. Yakimova
%T Fractal and Computational Geometry for Generalizing Cartographic Objects
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 152-160
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a14/
%G ru
%F MAIS_2012_19_6_a14
O. R. Musin; A. U. Ukhalov; H. Edelsbrunner; O. P. Yakimova. Fractal and Computational Geometry for Generalizing Cartographic Objects. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 152-160. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a14/

[1] A. M. Berlyant, O. R. Musin, T. V. Sobchuk, Kartograficheskaya generalizatsiya i teoriya fraktalov, M., 1998

[2] Emmanuel Fritsch, “Use of Whirlpool algorithm for ADBS data generalization”, ADBS meeting, 1999

[3] D. H. Douglas, T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature”, Canadian Cartographer, 10:2 (1973), 112–122

[4] Jiang Bin, Liu Xintao, Jia Tao, Scaling of Geographic Space as a Universal Rule for Mapping or Cartographic Generalization, 2011, arXiv: 1102.1561v1

[5] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000