Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 137-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce and study a class of centrally symmetric polytopes — perfect prismatoids — and some its properties related to the famous conjecture concerning face numbers of centrally symmetric polytopes are proved. It is proved that any Hanner polytope is a perfect prismatoid and any perfect prismatoid is affine equivalent to some $0/1$-polytope.
Keywords: polytopes, Hanner polytopes
Mots-clés : Kalai's conjecture.
@article{MAIS_2012_19_6_a12,
     author = {M. A. Kozachok},
     title = {Perfect {Prismatoids} and the {Conjecture} {Concerning}  {Face} {Numbers} of {Centrally} {Symmetric} {Polytopes}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a12/}
}
TY  - JOUR
AU  - M. A. Kozachok
TI  - Perfect Prismatoids and the Conjecture Concerning  Face Numbers of Centrally Symmetric Polytopes
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 137
EP  - 147
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a12/
LA  - ru
ID  - MAIS_2012_19_6_a12
ER  - 
%0 Journal Article
%A M. A. Kozachok
%T Perfect Prismatoids and the Conjecture Concerning  Face Numbers of Centrally Symmetric Polytopes
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 137-147
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a12/
%G ru
%F MAIS_2012_19_6_a12
M. A. Kozachok. Perfect Prismatoids and the Conjecture Concerning  Face Numbers of Centrally Symmetric Polytopes. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 6, pp. 137-147. http://geodesic.mathdoc.fr/item/MAIS_2012_19_6_a12/

[1] I. Barany, L. Lovasz, “On the numbers of faces of centrally-symmetric simplicial polytopes”, Graphs and Combinatorics, 3 (1987), 55–66 | MR

[2] O. Hanner, “Intersections of translates of convex body”, Math. Scand., 4 (1956), 67–89 | MR

[3] G. Kalai, “The Number of Faces of Centrally-symmetric Polytopes”, Graphs and Combinatorics, 5 (1989) | MR

[4] R. Sanyal, A. Werner, G. Ziegler, On Kalai’s conjectures concerning centrally symmetric polytopes, 2007, arXiv: 0708.3661v2 [math.CO] | MR

[5] R. Stanley, “Borsuk's theorem and the number of centrally symmetric polytopes”, Acta Math. Acad. Sci. Hungar., 40 (1982), 323–329 | MR

[6] G. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995 | MR

[7] M. S. Panov, “Critical Polyhedra”, Proceedings, Numgrid, 2008 | MR