Polynomial Method for Constructing Equilibrium Configurations of Point Vortices in the Plane
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 50-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing and classifying stationary and translating configurations of point vortices with an arbitrary choice of circulations is studied. The polynomial method enabling one to find any such configuration is described in detail. Stationary configurations for vortex systems with circulations $\Gamma$, $-\mu\Gamma$ are classified in the case of integer $\mu$. New configurations are obtained.
Keywords: point vortices, stationary configurations, translating configurations.
@article{MAIS_2012_19_5_a4,
     author = {M. V. Demina and N. A. Kudryashov},
     title = {Polynomial {Method} for {Constructing} {Equilibrium} {Configurations} of {Point} {Vortices} in the {Plane}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {50--55},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a4/}
}
TY  - JOUR
AU  - M. V. Demina
AU  - N. A. Kudryashov
TI  - Polynomial Method for Constructing Equilibrium Configurations of Point Vortices in the Plane
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 50
EP  - 55
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a4/
LA  - ru
ID  - MAIS_2012_19_5_a4
ER  - 
%0 Journal Article
%A M. V. Demina
%A N. A. Kudryashov
%T Polynomial Method for Constructing Equilibrium Configurations of Point Vortices in the Plane
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 50-55
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a4/
%G ru
%F MAIS_2012_19_5_a4
M. V. Demina; N. A. Kudryashov. Polynomial Method for Constructing Equilibrium Configurations of Point Vortices in the Plane. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 50-55. http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a4/

[1] A. V. Borisov, I. S. Mamaev, Matematicheskie metody dinamiki vikhrevykh struktur, Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2005, 368 pp. | MR

[2] H. B. Kadtke, L. J. Campbell, “Method for finding stationary states of point vortices”, Phys. Rev. A, 36 (1987), 4360–4370 | DOI

[3] H. Aref, “Relative equilibria of point vortices and the fundamental theorem of algebra”, Proc. R. Soc. A, 467 (2011), 2168–2184 | DOI | MR | Zbl

[4] K. A. O'Neil, “Minimal polynomial systems for point vortex equilibria”, Physica D, 219 (2006), 69–79 | DOI | MR

[5] V. K. Tkachenko, “O vikhrevykh reshetkakh”, ZhETF, 49:6(12) (1965), 1875–1883

[6] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg-de Vries equation”, Commun. Math. Phys., 61 (1978), 1–30 | DOI | MR

[7] M. V. Demina, N. A. Kudryashov, “Point vortices and polynomials of the Sawada–Kotera and Kaup–Kupershmidt equations”, R Dynamics, 16:6 (2011), 562–576 | MR | Zbl

[8] M. V. Demina, N. A. Kudryashov, “Vortices and polynomials: non–uniqueness of the Adler–Moser polynomials for the Tkachenko equation”, J. Phys. A: Math. Theor., 45 (2012), 195–205 | DOI | MR