Stationary States of a Delay Differentional Equation of Insect Population's Dynamics
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relaxation oscillations in a first order differential equation with two delays are considered. On the basis of a special asymptotic big parameter method the problem of studying dynamics of an equation is reduced to the analysis of nonlinear mappings. Each cycle of these mappings corresponds to a periodic solution of the initial equation with the same stability.
Keywords: delay differential equation, large parameter, asymptotic, periodic solution.
@article{MAIS_2012_19_5_a1,
     author = {S. A. Kaschenko},
     title = {Stationary {States} of a {Delay} {Differentional} {Equation} of {Insect} {Population's} {Dynamics}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a1/}
}
TY  - JOUR
AU  - S. A. Kaschenko
TI  - Stationary States of a Delay Differentional Equation of Insect Population's Dynamics
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 18
EP  - 34
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a1/
LA  - ru
ID  - MAIS_2012_19_5_a1
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%T Stationary States of a Delay Differentional Equation of Insect Population's Dynamics
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 18-34
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a1/
%G ru
%F MAIS_2012_19_5_a1
S. A. Kaschenko. Stationary States of a Delay Differentional Equation of Insect Population's Dynamics. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 5, pp. 18-34. http://geodesic.mathdoc.fr/item/MAIS_2012_19_5_a1/

[1] Yu. S. Kolesov, “Modelirovanie populyatsii nasekomykh”, Biofizika, 28:3 (1983), 513–514

[2] Yu. S. Kolesov, E. P. Kubyshkin, “Nekotorye svoistva reshenii differentsialno-raznostnykh uravnenii, modeliruyuschikh dinamiku izmeneniya chislennosti populyatsii nasekomykh”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1983, 64–86 | MR

[3] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno-raznostnykh uravnenii, modeliruyuschikh zadachu khischnik-zhertva”, Dokl. AN SSSR, 266:4 (1982), 792–795 | MR

[4] S. A. Kaschenko, “Biologicheskoe ob'yasnenie nekotorykh zakonov funktsionirovaniya prosteishikh ekosistem v ekstremalnykh sluchayakh”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1982, 85–104

[5] S. A. Kaschenko, “Statsionarnye rezhimy uravneniya, opisyvayuschego kolebaniya chislennosti nasekomykh”, Dokl. AN SSSR, 273:2 (1983), 328–330 | MR

[6] S. A. Kaschenko, Issledovanie statsionarnykh rezhimov differentsialno-raznostnogo uravneniya dinamiki populyatsii nasekomykh, Dep. VINITI 15.01.85, No 386-85, 32 pp.

[7] A. N. Sharkovskii, “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi v sebya”, Ukrainskii matematicheskii zhurnal, 13:3 (1964), 86–94

[8] A. N. Sharkovskii, “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukrainskii matematicheskii zhurnal, 17:3 (1965), 104–111 | MR

[9] A. N. Sharkovskii, Raznostnye uravneniya i dinamika chislennosti populyatsii, Preprint Instituta matematiki AN USSR, No 82. 18, 1982, 22 pp.

[10] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1981, 64–85

[11] S. A. Kaschenko, “Slozhnye statsionarnye rezhimy odnogo differentsialno-raznostnogo uravneniya, obobschayuschego uravnenie Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1983, 94–101

[12] S. D. Glyzin, “Dvukhchastotnye kolebaniya fundamentalnogo uravneniya dinamiki populyatsii nasekomykh”, Nelineinye kolebaniya i ekologiya, Mezhvuz. sb., Yaroslavl, 1984, 91–116 | MR

[13] S. D. Glyzin, “Uchet vozrastnykh grupp v uravnenii Khatchinsona”, Modelirovanie i analiz informatsionnykh sistem, 14:3 (2007), 50–63 | MR