Some Notes about Arrangements of Points on Quadrics
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 72-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered the minimization of a quadratic polynomial on the set of all points of a multidimensional space, coordinates of which are either zero or one. Some restrictions are imposed on the arrangement of the minimum points when there are many such points.
Keywords: combinatorial optimization, quadratic programming, empty quadric, polytope
Mots-clés : facet.
@article{MAIS_2012_19_4_a6,
     author = {A. V. Seliverstov},
     title = {Some {Notes} about {Arrangements} of {Points} on {Quadrics}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {72--77},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a6/}
}
TY  - JOUR
AU  - A. V. Seliverstov
TI  - Some Notes about Arrangements of Points on Quadrics
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 72
EP  - 77
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a6/
LA  - ru
ID  - MAIS_2012_19_4_a6
ER  - 
%0 Journal Article
%A A. V. Seliverstov
%T Some Notes about Arrangements of Points on Quadrics
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 72-77
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a6/
%G ru
%F MAIS_2012_19_4_a6
A. V. Seliverstov. Some Notes about Arrangements of Points on Quadrics. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 4, pp. 72-77. http://geodesic.mathdoc.fr/item/MAIS_2012_19_4_a6/

[1] V. L. Beresnev, Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izdatelstvo Instituta matematiki, Novosibirsk, 2005, 408 pp.

[2] A. Billionnet, S. Elloumi, “Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem”, Mathematical programming. Ser. A, 109:1 (2007), 55–68 | DOI | MR | Zbl

[3] A. Ahlatçioğlu, M. Bussieck, M. Esen, M. Guignard, J.-H. Jagla, A. Meeraus, “Combining QCR and CHR for convex quadratic pure 0-1 programming problems with linear constraints”, Annals of operations research, 199:1 (2012), 33–49 | DOI | MR | Zbl

[4] V. A. Emelichev, V. V. Korotkov, “Ob ustoichivosti leksikograficheskogo resheniya vektornoi minimaksnoi kvadratichnoi bulevoi zadachi”, Tr. Instituta matem. NAN Belarusi, 19:2 (2011), 26–36 | Zbl

[5] V. A. Emelichev, M. M. Kovalev, M. K. Kravtsov, Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981, 344 pp. | MR

[6] M. Padberg, “The boolean quadric polytope: some characteristics, facets and relatives”, Mathematical programming, 45:1–3 (1989), 139–172 | DOI | MR | Zbl

[7] A. N. Maksimenko, “O chisle faset 2-smezhnostnogo mnogogrannika”, Model. i analiz inform. sistem, 17:1 (2010), 76–82

[8] M. Deza, M. Loran, Geometriya razrezov i metrik, MTsNMO, M., 2001, 73 pp.

[9] W. Zhao, M. E. Posner, “A large class of facets for the K-median polytope”, Mathematical programming, Ser. A, 128, no. 1–2, 2011, 171–203 | DOI | MR | Zbl

[10] L. Galli, K. Kaparis, A. N. Letchford, “Gap inequalities for non-convex mixed-integer quadratic programs”, Operations research letters, 39:5 (2011), 297–300 | MR | Zbl

[11] A. V. Nikolaev, “Gipergrafy spetsialnogo vida i analiz svoistv relaksatsii razreznogo mnogogrannika”, Model. i analiz inform. sistem, 18:3 (2011), 82–100

[12] B. N. Delone, “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62

[13] A. V. Seliverstov, V. A. Lyubetskii, “O simmetrichnykh matritsakh s neopredelennoi glavnoi diagonalyu”, Probl. peredachi inform., 45:3 (2009), 73–78 | MR | Zbl

[14] A. V. Seliverstov, V. A. Lyubetskii, “O formakh, ravnykh nulyu v kazhdoi vershine kuba”, Informatsionnye protsessy, 11:3 (2011), 330–335 http://www.jip.ru | MR

[15] K. P. Costello, V. H. Vu, “The rank of random graphs”, Random structures and algorithms, 33:3 (2008), 269–285 | DOI | MR | Zbl