On Smoothness in $L_p$, $0 p 1$
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 3, pp. 97-104

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss properties of functions which are covered by spreading the differentiation operator from the space $W_1^1$.
Keywords: differentiation operator
Mots-clés : quasinorm.
@article{MAIS_2012_19_3_a5,
     author = {A. N. Morozov},
     title = {On {Smoothness} in $L_p$, $0 < p < 1$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a5/}
}
TY  - JOUR
AU  - A. N. Morozov
TI  - On Smoothness in $L_p$, $0 < p < 1$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 97
EP  - 104
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a5/
LA  - ru
ID  - MAIS_2012_19_3_a5
ER  - 
%0 Journal Article
%A A. N. Morozov
%T On Smoothness in $L_p$, $0 < p < 1$
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 97-104
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a5/
%G ru
%F MAIS_2012_19_3_a5
A. N. Morozov. On Smoothness in $L_p$, $0 < p < 1$. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 3, pp. 97-104. http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a5/