Bursting Behavior in the System of Coupled Oscillators with Delay and its Statistical Analysis
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 3, pp. 82-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The statistical analysis of random quantities derived from the dynamics of interaction of a pair of neuron-type oscillators are presented. It is shown that computation of some statistical characteristics of the process allows, with enough precision, to distinguish two types of orbits, while their phase portraits, Lyapunov dimension and time plots are slightly different.
Keywords: dynamical systems, oscillators, entropy, correlation integral.
@article{MAIS_2012_19_3_a4,
     author = {S. D. Glyzin and E. A. Marushkina},
     title = {Bursting {Behavior} in the {System} of {Coupled} {Oscillators} with {Delay} and its {Statistical} {Analysis}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - E. A. Marushkina
TI  - Bursting Behavior in the System of Coupled Oscillators with Delay and its Statistical Analysis
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 82
EP  - 96
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a4/
LA  - ru
ID  - MAIS_2012_19_3_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A E. A. Marushkina
%T Bursting Behavior in the System of Coupled Oscillators with Delay and its Statistical Analysis
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 82-96
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a4/
%G ru
%F MAIS_2012_19_3_a4
S. D. Glyzin; E. A. Marushkina. Bursting Behavior in the System of Coupled Oscillators with Delay and its Statistical Analysis. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 3, pp. 82-96. http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a4/

[1] V. V. Maiorov, I. Yu. Myshkin, “Matematicheskoe modelirovanie neironov seti na osnove uravnenii s zapazdyvaniem”, Matematicheskoe modelirovanie, 2:11 (1990), 64–76 | MR

[2] S. A. Kaschenko, V. V. Maiorov, “Ob odnom differentsialno-raznostnom uravnenii, modeliruyuschem impulsnuyu aktivnost neirona”, Matematicheskoe modelirovanie, 5:12 (1993), 13–25 | MR

[3] S. D. Glyzin, E. O. Kiseleva, “Dinamika vzaimodeistviya pary ostsillyatorov neironnogo tipa”, Modelirovanie i analiz informatsionnykh sistem, 15:2 (2008), 75–88 | MR

[4] S. D. Glyzin, E. O. Ovsyannikova, “Dvukhchastotnye kolebaniya obobschennogo uravneniya impulsnogo neirona s dvumya zapazdyvaniyami”, Modelirovanie i analiz informatsionnykh sistem, 18:1 (2011), 86–105

[5] S. D. Glyzin, E. O. Kiseleva, “Uchet zapazdyvaniya v tsepochke svyazi mezhdu ostsillyatorami”, Modelirovanie i analiz informatsionnykh sistem, 17:2 (2010), 140–150

[6] S. D. Glyzin, “Stsenarii fazovykh perestroek odnoi konechnoraznostnoi modeli uravneniya «reaktsiya-diffuziya»”, Differents. uravneniya, 33:6 (1997), 805–811 | MR | Zbl

[7] E. A. Timofeev, “Statisticheski otsenivaemye invarianty mer”, Algebra i analiz, 17:3 (2005), 204–236 | MR

[8] G. Shuster, Determinirovannyi khaos: vvedenie, Mir, M., 1988 | MR | Zbl

[9] S. D. Glyzin, “Relaksatsionnye kolebaniya elektricheski svyazannykh neiropodobnykh ostsillyatorov s zapazdyvaniem”, Modelirovanie i analiz informatsionnykh sistem, 17:2 (2010), 28–47

[10] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v neironnykh sistemakh, I”, Differentsialnye uravneniya, 47:7 (2011), 919–932 | MR | Zbl

[11] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v neironnykh sistemakh, II”, Differentsialnye uravneniya, 47:12 (2011), 1675–1692 | MR | Zbl

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v neironnykh sistemakh, III”, Differentsialnye uravneniya, 48:2 (2012), 155–170 | MR | Zbl