Asymptotics of Solutions of the Generalized Hutchinson's Equation
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 3, pp. 32-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the dynamics of the Hutchinson's equation and its generalizations. An estimate of the global stability region of a positive steady state is obtained. The main results refer to existence, stability and asymptotics of a slow oscillating solution. New asymptotic methods are applied to a problem of dynamical properties of ODE system describing Belousov–Zhabotinsky reaction.
Keywords: delay differential equation, Hutchinson's equation, large parameter, asymptotic, periodic solution.
@article{MAIS_2012_19_3_a1,
     author = {S. A. Kaschenko},
     title = {Asymptotics of {Solutions} of the {Generalized} {Hutchinson's} {Equation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {32--61},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a1/}
}
TY  - JOUR
AU  - S. A. Kaschenko
TI  - Asymptotics of Solutions of the Generalized Hutchinson's Equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 32
EP  - 61
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a1/
LA  - ru
ID  - MAIS_2012_19_3_a1
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%T Asymptotics of Solutions of the Generalized Hutchinson's Equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 32-61
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a1/
%G ru
%F MAIS_2012_19_3_a1
S. A. Kaschenko. Asymptotics of Solutions of the Generalized Hutchinson's Equation. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 3, pp. 32-61. http://geodesic.mathdoc.fr/item/MAIS_2012_19_3_a1/

[1] Yang Kuang, Delay Differential Equations. With Applications in Population Dynamics, Academic Press, 1993 | MR

[2] E. M. Wright, “A non-linear differential equation”, J. Reine Angew. Math., 194:1–4 (1955), 66–87 | MR | Zbl

[3] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(a - by(t-\tau))y(t)$”, Contributions to the theory of non-linear oscillations, Ann. Math. Stud., IV, Princeton University Press, Princeton, 1958, 1–18 | MR

[4] S. A. Kaschenko, “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoi ustoichivosti uravneniya Khatchinsona”, Nelineinye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 9

[5] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)[1+f(x)]$”, J. Math. Anal. and Appl., 5 (1962), 435–450 | DOI | MR | Zbl

[6] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 22

[7] S. A. Kaschenko, “O periodicheskikh resheniyakh uravneniya $x'(t)=-lx(t-1)[1+x(t)]$”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 110–117

[8] R. Edvars, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969, 1071 pp.

[9] S. A. Kaschenko, Statsionarnye rezhimy v zadache khischnik-zhertva, Preprint instituta matematiki AN USSR, 1984

[10] S. A. Kaschenko, “Issledovanie sistemy differentsialno-raznostnykh uravnenii, opisyvayuschikh rabotu yadernogo reaktora”, Voprosy atomnoi nauki i tekhniki, Seriya fizika i tekhnika yadernykh reaktorov, no. 2, 1987, 66–69

[11] S. A. Kaschenko, “Issledovanie metodami bolshogo parametra sistemy nelineinykh differentsialno raznostnykh uravnenii, modeliruyuschikh zadachu khischnik–zhertva”, DAN SSSR, 266 (1982), 792–795

[12] S. A. Kaschenko, “Statsionarnye rezhimy uravneniya, opisyvayuschego chislennosti nasekomykh”, Dokl. AN SSSR, 273:2 (1983), 328–330 | MR

[13] A. S. Dmitriev, C. A. Dmitriev, “Dinamika generatora s zapazdyvayuschei obratnoi svyazyu i nizkodobrotnym filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 12 (1989), 16

[14] E. V. Grigorieva, S. A. Kashchenko, “Regular and chaotic pulsations in laser diode with delayed feedback”, Int. J. Bifur. Chaos, 3:3 (1993), 1515–1528 | DOI | Zbl

[15] E. V. Grigorieva, S. A. Kashchenko, “Complex temporal structures in models of a laser with optoelectronic delayed feedback”, Optics Communications, 2:1–2 (1993), 83–92

[16] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, LIBROKOM, M., 2009

[17] A. V. Kuzmichev, “Asimptotika periodicheskogo resheniya sistemy differentsialno-raznostnykh uravnenii, modeliruyuschei immunnyi otklik organizma”, Nelineinye kolebaniya v zadachakh ekologii, Yaroslavl, 1985, 63–70 | MR

[18] S. A. Kaschenko, “Slozhnye statsionarnye rezhimy odnogo differentsialno-raznostnogo uravneniya, obobschayuschego uravnenie Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1983, 8

[19] S. A. Kaschenko, “Ob ustanovivshikhsya rezhimakh uravneniya Khatchinsona s diffuziei”, DAN SSSR, 292:2 (1987), 327–330 | MR

[20] S. A. Kaschenko, “Prostranstvenno-neodnorodnye struktury v prosteishikh modelyakh s zapazdyvaniem i diffuziei”, Matematicheskoe modelirovanie, 2:9 (1990), 49–69 | MR

[21] S. A. Kaschenko, “Optimizatsiya protsessa okhoty”, Differentsialnye uravneniya, 21:10 (1985), 1706–1709 | MR

[22] R. D. Nussbaum, “Differential-delay equations with two time lage”, Memoirs of the Amer. Math. Soc., 1977 | MR

[23] T. L. Kaplan, T. A. Yorke, “Ordinary Differential Equations which Yield Periodic Solutions of Differential Delay Equations”, J. Math. Anal. and Appl., 48 (1974), 317–424 | DOI | MR

[24] Yu. S. Kolesov, V. V. Maiorov, “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti-periodicheskimi koeffitsientami”, Differentsialnye uravneniya, 10:10 (1979), 1778–1788

[25] A. Yu. Kolesov, Yu. S. Kolesov, V. V. Maiorov, “Reaktsiya Belousova: matematicheskaya model i eksperimentalnye fakty”, Dinamika biologicheskikh populyatsii, GGU, Gorkii, 1987, 43–51

[26] S. A. Kaschenko, “Asimptotika relaksatsionnykh kolebanii v matematicheskoi modeli reaktsii Belousova”, Dinamika biologicheskikh populyatsii, GGU, Gorkii, 1987

[27] Yu. M. Romanovskii, N. V. Stepanova, D. S. Chernavskii, Matematicheskoe modelirovanie v biofizike, Nauka, M., 1975 | MR