Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2012_19_2_a3, author = {L. V. Korolev and D. O. Bytev}, title = {Grinding kinetic equation with an arbitrary law of waiting time distribution}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {53--61}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/} }
TY - JOUR AU - L. V. Korolev AU - D. O. Bytev TI - Grinding kinetic equation with an arbitrary law of waiting time distribution JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 53 EP - 61 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/ LA - ru ID - MAIS_2012_19_2_a3 ER -
L. V. Korolev; D. O. Bytev. Grinding kinetic equation with an arbitrary law of waiting time distribution. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/
[1] V. A. Padokhin, G. A. Zueva, “Stokhasticheskie modeli izmelcheniya dispersnykh materialov”, Teoreticheskie osnovy khimicheskoi tekhnologii, 43:5 (2009), 586–594
[2] L. V. Korolev, D. O. Bytev, “Kinetika protsessov izmelcheniya so stepennym raspredeleniem vremeni razrusheniya”, Cb. tr. MNK MMTT – 23, v. 11, SGTU, Saratov, 2010, 6–7
[3] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5 (1995), 1875–1884
[4] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Binom; Laboratoriya znanii, M., 2003, 632 pp.