Grinding kinetic equation with an arbitrary law of waiting time distribution
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized kinetic equation of a grinding process is obtained. The equation is valid for arbitrary distribution of particle destruction waiting time. In terms of the equation a grinding process model with the power law of waiting time distribution is proposed. The particle size dependence of the power index is taken into account and its influence on grinding process kinetics is investigated.
Keywords: grinding, kinetics, waiting time.
Mots-clés : distribution
@article{MAIS_2012_19_2_a3,
     author = {L. V. Korolev and D. O. Bytev},
     title = {Grinding kinetic equation with an arbitrary law of waiting time distribution},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/}
}
TY  - JOUR
AU  - L. V. Korolev
AU  - D. O. Bytev
TI  - Grinding kinetic equation with an arbitrary law of waiting time distribution
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 53
EP  - 61
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/
LA  - ru
ID  - MAIS_2012_19_2_a3
ER  - 
%0 Journal Article
%A L. V. Korolev
%A D. O. Bytev
%T Grinding kinetic equation with an arbitrary law of waiting time distribution
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 53-61
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/
%G ru
%F MAIS_2012_19_2_a3
L. V. Korolev; D. O. Bytev. Grinding kinetic equation with an arbitrary law of waiting time distribution. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a3/

[1] V. A. Padokhin, G. A. Zueva, “Stokhasticheskie modeli izmelcheniya dispersnykh materialov”, Teoreticheskie osnovy khimicheskoi tekhnologii, 43:5 (2009), 586–594

[2] L. V. Korolev, D. O. Bytev, “Kinetika protsessov izmelcheniya so stepennym raspredeleniem vremeni razrusheniya”, Cb. tr. MNK MMTT – 23, v. 11, SGTU, Saratov, 2010, 6–7

[3] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5 (1995), 1875–1884

[4] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Binom; Laboratoriya znanii, M., 2003, 632 pp.