Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2012_19_2_a0, author = {M. A. Zavod{\cyrs}hikov}, title = {Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {5--18}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/} }
TY - JOUR AU - M. A. Zavodсhikov TI - Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$ JO - Modelirovanie i analiz informacionnyh sistem PY - 2012 SP - 5 EP - 18 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/ LA - ru ID - MAIS_2012_19_2_a0 ER -
%0 Journal Article %A M. A. Zavodсhikov %T Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$ %J Modelirovanie i analiz informacionnyh sistem %D 2012 %P 5-18 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/ %G ru %F MAIS_2012_19_2_a0
M. A. Zavodсhikov. Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 5-18. http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/