Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 5-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider Giseker–Maruyama moduli scheme $\mathrm M:=\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank 2 with Chern classes $c_1=-1$, $c_2=2$, $c_3=0$ on 3-dimensional projective space $\mathbb P ^3$. We will define two sets of sheaves $\mathcal M_1$ and $\mathcal M_2$ in $\mathrm M$ and we will prove that closures of $\mathcal M_1$ and $\mathcal M_2$ in $\mathrm M$ are irreducible components of dimensions 15 and 19, accordingly.
Mots-clés : compactification, moduli scheme
Keywords: coherent torsion free sheave of rank 2, 3-dimensional projective space.
@article{MAIS_2012_19_2_a0,
     author = {M. A. Zavod{\cyrs}hikov},
     title = {Some new components of the moduli scheme  $\mathrm M_{\mathbb P^3}(2;-1,2,0)$  of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/}
}
TY  - JOUR
AU  - M. A. Zavodсhikov
TI  - Some new components of the moduli scheme  $\mathrm M_{\mathbb P^3}(2;-1,2,0)$  of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 5
EP  - 18
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/
LA  - ru
ID  - MAIS_2012_19_2_a0
ER  - 
%0 Journal Article
%A M. A. Zavodсhikov
%T Some new components of the moduli scheme  $\mathrm M_{\mathbb P^3}(2;-1,2,0)$  of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 5-18
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/
%G ru
%F MAIS_2012_19_2_a0
M. A. Zavodсhikov. Some new components of the moduli scheme  $\mathrm M_{\mathbb P^3}(2;-1,2,0)$  of stable coherent torsion free sheaves of rank~2 on $\mathbb P^3$. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 2, pp. 5-18. http://geodesic.mathdoc.fr/item/MAIS_2012_19_2_a0/

[1] K. Okonek, M. Shneider, Kh. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl

[2] R. Hartshorne, I. Sols, “Stable rank 2 vector bundles on $\mathbb{P}^3$ with $c_1=-1, c_2=2$”, J. Reine Angew. Math., 325 (1981), 145–152 (English) | MR | Zbl

[3] J. Meseguer, I. Sols, S. A. Stromme, “Compactification of a family of vector bundles on $\mathbb{P}\sp 3$”, Prog. Math., 18th Scand. Congr. Math., Proc. (Aarhus 1980), v. 11, 1981, 474–494 (English) | MR | Zbl

[4] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 (English) | DOI | MR | Zbl

[5] D. Huyberchts, M. Lehn, The Geometry of moduli spaces of sheaves, A Publication of the Max-Planck-Institut für Matematik, Bonn, 1997

[6] M.-C. Chang, “Stable rank $2$ reflexive sheaves on $\mathbb P^3$ with small $c_2$ and applications”, Trans. Amer. Math. Soc., 284:1 (1984), 57–89 | MR | Zbl

[7] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18 (1978), 557–614 (English) | MR | Zbl

[8] S.-A. Stromme, “Ample Divisors on Fine Moduli Spaces on Projective Plane”, Math. Z., 187 (1984), 405–423 | DOI | MR