A generalized solution of an initial boundary value problem arising in the mechanics of discrete-continuous systems
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 1, pp. 84-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we define a generalized solution of an initial boundary value problem for a linear system of differential equations with one ordinary differential equation and two partial differential equations (a hybrid system of differential equations). We have proved the existence theorem for a generalized solution, its uniqueness, the correctness of the problem. An analytical formula for the solution is found. Such a system of differential equations arises in the study of discrete-continuum mechanical systems.
Keywords: generalized solution; well-posedness of the problem; discrete-continuum mechanical systems; Timoshenko beam; analytical solution formula.
@article{MAIS_2012_19_1_a6,
     author = {E. P. Kubishkin and O. A. Khrebtyugova},
     title = {A generalized solution of an initial boundary value problem arising in the mechanics of discrete-continuous systems},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {84--96},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a6/}
}
TY  - JOUR
AU  - E. P. Kubishkin
AU  - O. A. Khrebtyugova
TI  - A generalized solution of an initial boundary value problem arising in the mechanics of discrete-continuous systems
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 84
EP  - 96
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a6/
LA  - ru
ID  - MAIS_2012_19_1_a6
ER  - 
%0 Journal Article
%A E. P. Kubishkin
%A O. A. Khrebtyugova
%T A generalized solution of an initial boundary value problem arising in the mechanics of discrete-continuous systems
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 84-96
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a6/
%G ru
%F MAIS_2012_19_1_a6
E. P. Kubishkin; O. A. Khrebtyugova. A generalized solution of an initial boundary value problem arising in the mechanics of discrete-continuous systems. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 1, pp. 84-96. http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a6/

[1] E. P. Kubyshkin, “Uravneniya dvizheniya odnoi mekhanicheskoi sistemy, modeliruyuschei dinamiku manipulyatsionnogo robota”, Matematika, kibernetika, informatika: trudy mezhdunarodnoi nauchnoi konferentsii pamyati A. Yu. Levina, YarGU, Yaroslavl, 2008, 100–113

[2] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR