On an isomorphism of compactifications of moduli scheme of vector bundles
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 1, pp. 37-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A morphism of the reduced Gieseker – Maruyama moduli functor (of semistable coherent torsion-free sheaves) on the surface to the reduced moduli functor of admissible semistable pairs with the same Hilbert polynomial, is constructed. It is shown that main components of reduced moduli scheme for semistable admissible pairs $((\widetilde S, \widetilde L), \widetilde E)$ are isomorphic to main components of the reduced Gieseker – Maruyama moduli scheme.
Keywords: semistable admissible pairs; moduli functor; vector bundles; algebraic surface.
@article{MAIS_2012_19_1_a2,
     author = {N. V. Timofeeva},
     title = {On an isomorphism of compactifications of moduli scheme of vector bundles},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {37--50},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a2/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On an isomorphism of compactifications of moduli scheme of vector bundles
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 37
EP  - 50
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a2/
LA  - ru
ID  - MAIS_2012_19_1_a2
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On an isomorphism of compactifications of moduli scheme of vector bundles
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 37-50
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a2/
%G ru
%F MAIS_2012_19_1_a2
N. V. Timofeeva. On an isomorphism of compactifications of moduli scheme of vector bundles. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 1, pp. 37-50. http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a2/

[1] N. V. Timofeeva, “Kompaktifikatsiya v skheme Gilberta mnogoobraziya modulei stabilnykh 2-vektornykh rassloenii na poverkhnosti”, Matem. zametki, 82:5 (2007), 756–769 | MR | Zbl

[2] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti”, Matem. sbornik, 199:7 (2008), 103–122 | MR

[3] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti, II”, Matem. sbornik, 200:3 (2009), 95–118 | MR | Zbl

[4] N. V. Timofeeva, “O vyrozhdenii poverkhnosti v kompaktifikatsii Fittinga modulei stabilnykh vektornykh rassloenii”, Matem. zametki, 90:1 (2011), 143–150 | Zbl

[5] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. III: Funktorialnyi podkhod”, Matem. sb., 202:3 (2011), 107–160 | MR | Zbl

[6] N. V. Timofeeva, On a new compactification of the moduli of vector bundles on a surface. IV: Nonreduced moduli, arXiv: 1108.3789v3 | MR

[7] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Annals of Math., 106 (1977), 45–60 | DOI | MR | Zbl

[8] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997, 269 pp. | MR | Zbl