The dynamics of Kuramoto equation with spatially-distributed control
Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 1, pp. 24-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study dynamical properties of a complex equation with spatially-distributed parameters. Families of special parabolic equations that define the behavior of initial problem solutions were built.
Keywords: spatially-distributed control; travelling wave; quasinormal form.
@article{MAIS_2012_19_1_a1,
     author = {I. S. Kashchenko and S. A. Kashchenko},
     title = {The dynamics of {Kuramoto} equation with spatially-distributed control},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {24--35},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a1/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - The dynamics of Kuramoto equation with spatially-distributed control
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2012
SP  - 24
EP  - 35
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a1/
LA  - ru
ID  - MAIS_2012_19_1_a1
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A S. A. Kashchenko
%T The dynamics of Kuramoto equation with spatially-distributed control
%J Modelirovanie i analiz informacionnyh sistem
%D 2012
%P 24-35
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a1/
%G ru
%F MAIS_2012_19_1_a1
I. S. Kashchenko; S. A. Kashchenko. The dynamics of Kuramoto equation with spatially-distributed control. Modelirovanie i analiz informacionnyh sistem, Tome 19 (2012) no. 1, pp. 24-35. http://geodesic.mathdoc.fr/item/MAIS_2012_19_1_a1/

[1] H. Haken, Synergetics; An Introducion, 3rd Revised and Enlarged Edition, Springer, 1983 | MR

[2] H. Haken, Brain Dynamics; Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer, 2002 | MR

[3] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, 1984 | MR | Zbl

[4] Y. Kuramoto, D. Battogtokh, “Coexisting of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385

[5] E. V. Grigorieva, H. Haken, S. A. Kaschenko et al., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Physica D., 125:1–2 (1999), 123–141 | DOI | Zbl

[6] I. S. Kaschenko, S. A. Kaschenko, “Bystro ostsilliruyuschie prostranstvenno-neodnorodnye struktury v kogerentnykh nelineino-opticheskikh sistemakh”, DAN, 435:1 (2010), 14–17

[7] S. A. Kaschenko, “Asimptotika prostranstvenno-neodnorodnykh struktur v kogerentnykh nelineino-opticheskikh sistemakh”, Zhurnal vychisl. matem. i matem. fiz., 31:3 (1991), 467–473 | MR | Zbl

[8] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Int. J. of Bifurcations and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[9] I. S. Kaschenko, S. A. Kaschenko, “Dinamika uravneniya s bolshim prostranstvenno-raspredelennym upravleniem”, Doklady Akademii Nauk, 438:1 (2011), 30–34

[10] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl

[11] S. A. Kaschenko, “Issledovanie ustoichivosti reshenii lineinykh parabolicheskikh uravnenii s blizkimi k postoyannym koeffitsientami i maloi diffuziei”, Tr. seminara im. I. G. Petrovskogo, 15 (1991)

[12] S. A. Kaschenko, “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differentsialnye uravneniya, 25:2 (1989), 262–270 | MR