Inhibitor Petri net that executes an arbitrary given Markov normal algorithm
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 4, pp. 80-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inhibitor Petri net with a fixed structure that executes an arbitrary given Markov normal algorithm was constructed. The algorithm and its input string are encoded by nonnegative integer numbers and put into dedicated places of the Petri net which implements the application of algorithm productions over the string of symbols. The rules of the sequential, branching and cyclic processes encoding by Petri nets were used. At the completion of the net work, the output string is restored (decoded) from the integer form of representation. Within the paradigm of computations on Petri nets the net built provides the compatibility of systems.
Keywords: normal algorithm of Markov, inhibitor Petri net, encoding, cipher.
@article{MAIS_2011_18_4_a7,
     author = {D. A. Zaitsev},
     title = {Inhibitor {Petri} net that executes an arbitrary given {Markov} normal algorithm},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {80--93},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_4_a7/}
}
TY  - JOUR
AU  - D. A. Zaitsev
TI  - Inhibitor Petri net that executes an arbitrary given Markov normal algorithm
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 80
EP  - 93
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_4_a7/
LA  - ru
ID  - MAIS_2011_18_4_a7
ER  - 
%0 Journal Article
%A D. A. Zaitsev
%T Inhibitor Petri net that executes an arbitrary given Markov normal algorithm
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 80-93
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_4_a7/
%G ru
%F MAIS_2011_18_4_a7
D. A. Zaitsev. Inhibitor Petri net that executes an arbitrary given Markov normal algorithm. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 4, pp. 80-93. http://geodesic.mathdoc.fr/item/MAIS_2011_18_4_a7/

[1] D. A. Zaitsev, “Universal Inhibitor Petri Net”, Proceedings of the 17th German Workshop on Algorithms and Tools for Petri Nets (Cottbus, Germany, October 07-08), 2010, 1–15 http://CEUR-WS.org/Vol-643/

[2] A. M. Turing, “ On Computable Numbers with an Application to the Entscheidungsproblem”, Proceedings of the London Mathematical Society, 42 (1936), 230–265 | DOI

[3] A. A. Markov, Teoriya algorifmov, Tr. MIAN, 42, 1954, 376 pp. | MR | Zbl

[4] D.A. Zaitsev, “Postroenie seti Petri ispolnyayuschei mashinu Tyuringa”, Materialy IV mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Kompyuternaya matematika v nauke, inzhenerii i obrazovanii» (CMSEE-2010) (g. Poltava, 1-31 oktyabrya 2010 g.), Izd-vo NAN Ukrainy, Kiev, 2010, 12–14

[5] V. E. Kotov, Seti Petri, Nauka, M., 1984, 160 pp. | MR

[6] A. I. Sleptsov, A. A. Yurasov, Avtomatizatsiya proektirovaniya upravlyayuschikh sistem gibkikh avtomatizirovannykh proizvodstv, ed. B. N. Malinovskii, Tekhnika, K., 1986, 160 pp.