On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 3, pp. 21-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a method for constructing the asymptotics for a set of linear independent solutions of systems of differential equations with oscillatory decreasing coefficients. We illustrate this method by constructing the asymptotics for solutions of a system of two oscillators with slowly decreasing coupling and friction in one of the oscillators.
Keywords: oscillatory decreasing coefficients, critical solutions, method of averaging, asymptotics, coupled oscillators.
@article{MAIS_2011_18_3_a2,
     author = {P. N. Nesterov},
     title = {On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {21--41},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a2/}
}
TY  - JOUR
AU  - P. N. Nesterov
TI  - On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 21
EP  - 41
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a2/
LA  - ru
ID  - MAIS_2011_18_3_a2
ER  - 
%0 Journal Article
%A P. N. Nesterov
%T On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 21-41
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a2/
%G ru
%F MAIS_2011_18_3_a2
P. N. Nesterov. On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 3, pp. 21-41. http://geodesic.mathdoc.fr/item/MAIS_2011_18_3_a2/

[1] P. N. Nesterov, “Metod usredneniya v zadache asimptoticheskogo integrirovaniya sistem s kolebatelno ubyvayuschimi koeffitsientami”, Differentsialnye uravneniya, 43:6 (2007), 731–742 | MR | Zbl

[2] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958, 475 pp.

[3] M. S. P. Eastham, The asymptotic solution of linear differential systems, Clarendon Press, Oxford, 1989 | MR | Zbl

[4] P. Nesterov, “Method of averaging for systems with main part vanishing at infinity”, Math. Nachr., 284:11–12 (2011), 1496–1514 | DOI | Zbl

[5] W. A. Coppel, Dichotomies in stability theory, Springer-Verlag, New York, 1978 | MR

[6] S. Trofimchuk, M. Pinto, “$L_p$-perturbations of invariant subbundles for linear systems”, J. Dynam. Differential Equations, 14 (2002), 743–761 | DOI | MR | Zbl

[7] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[8] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, New York, 1996 | MR

[9] F. R. Gantmakher, Teoriya matrits, FIZMATLIT, M., 2004, 560 pp.

[10] Yu. S. Kolesov, V. V. Maiorov, “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differentsialnye uravneniya, 10:10 (1974), 1778–1788 | MR | Zbl

[11] P. Nesterov, “On the asymptotics for solutions of system of two linear oscillators with slowly decreasing coupling”, ZAMM Z. Angew. Math. Mech., 89:6 (2009), 466–480 | DOI | MR | Zbl