Resonances in the problem of the panel flutter in a~supersonic gas flow
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 56-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a linear formulation of the problem of plane vibrations in a supersonic gas flow. Fluctuations of the plane are studied in the case when one of its ends is rigidly fixed, while the second is free. The flow rate is found for which internal resonance eigenfrequencies 1:1, 1:2, 1:3 are implemented. The determination of the speed and the corresponding frequency is reduced to the system of two transcendental equations. The system is numerically studied.
Keywords: internal resonance; boundary value problem; differential operator; lower flutter speed.
@article{MAIS_2011_18_1_a5,
     author = {A. N. Kulikov and G. V. Pilipenko},
     title = {Resonances in the problem of the panel flutter in a~supersonic gas flow},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {56--67},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a5/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - G. V. Pilipenko
TI  - Resonances in the problem of the panel flutter in a~supersonic gas flow
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 56
EP  - 67
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a5/
LA  - ru
ID  - MAIS_2011_18_1_a5
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A G. V. Pilipenko
%T Resonances in the problem of the panel flutter in a~supersonic gas flow
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 56-67
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a5/
%G ru
%F MAIS_2011_18_1_a5
A. N. Kulikov; G. V. Pilipenko. Resonances in the problem of the panel flutter in a~supersonic gas flow. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 56-67. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a5/

[1] V. V. Bolotin, Nekonservativnye zadachi teorii uprugoi ustoichivosti, Fizmatlit, M., 1961 | MR

[2] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[3] A. N. Kulikov, “Bifurkatsiya avtokolebanii plastiny pri malom dempfirovanii v sverkhzvukovom potoke gaza”, Prikladnaya matematika i mekhanika, 73:2 (2000), 271–281

[4] A. N. Kulikov, A. O. Tolbei, “Opredelenie nizhnei kriticheskoi skorosti flattera”, Sovremennye problemy matematiki i informatiki, 7, 2005, 157–163

[5] P. J. Holmes, J. E. Marsden, “Bifurcation to divergence and flutter in flow-induced oscillations: An infinite dimensional analysis”, Automatica, 14:4 (1978), 367–384 | DOI | MR | Zbl

[6] P. J. Holmes, “Bifurcations to divergence and flutter in flow-induced oscillations: A finite dimensional analysis”, Journal of Sound and Vibration, 53:4 (1977), 471–503 | DOI | MR | Zbl