Chaotic oscillations of a distributed system with infinite delay
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 46-55
Voir la notice de l'article provenant de la source Math-Net.Ru
It is considered the dynamics of a distributed rotor from a material with nonlinear-hereditary properties, one of its supports being under a periodical vibration. The mathematical model of the considered mechanical system is a system of differential equations in partial derivatives with infinite delay of the argument. It is found the conditions of chaotic fluctuations. The Lyapunov indices and Lyapunov dimension are calculated.
Keywords:
infinite delay; distributed rotor; vibration; method of integrated varieties; theory of normal forms; Abelian kernel; bifurcation.
@article{MAIS_2011_18_1_a4,
author = {A. Yu. Koverga and E. P. Kubishkin},
title = {Chaotic oscillations of a distributed system with infinite delay},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {46--55},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/}
}
TY - JOUR AU - A. Yu. Koverga AU - E. P. Kubishkin TI - Chaotic oscillations of a distributed system with infinite delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2011 SP - 46 EP - 55 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/ LA - ru ID - MAIS_2011_18_1_a4 ER -
A. Yu. Koverga; E. P. Kubishkin. Chaotic oscillations of a distributed system with infinite delay. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/