Chaotic oscillations of a distributed system with infinite delay
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered the dynamics of a distributed rotor from a material with nonlinear-hereditary properties, one of its supports being under a periodical vibration. The mathematical model of the considered mechanical system is a system of differential equations in partial derivatives with infinite delay of the argument. It is found the conditions of chaotic fluctuations. The Lyapunov indices and Lyapunov dimension are calculated.
Keywords: infinite delay; distributed rotor; vibration; method of integrated varieties; theory of normal forms; Abelian kernel; bifurcation.
@article{MAIS_2011_18_1_a4,
     author = {A. Yu. Koverga and E. P. Kubishkin},
     title = {Chaotic oscillations of a distributed system with infinite delay},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/}
}
TY  - JOUR
AU  - A. Yu. Koverga
AU  - E. P. Kubishkin
TI  - Chaotic oscillations of a distributed system with infinite delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 46
EP  - 55
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/
LA  - ru
ID  - MAIS_2011_18_1_a4
ER  - 
%0 Journal Article
%A A. Yu. Koverga
%A E. P. Kubishkin
%T Chaotic oscillations of a distributed system with infinite delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 46-55
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/
%G ru
%F MAIS_2011_18_1_a4
A. Yu. Koverga; E. P. Kubishkin. Chaotic oscillations of a distributed system with infinite delay. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a4/

[1] Yu. N. Rabotnov, Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR

[2] E. P. Kubyshkin, “Nekotorye voprosy dinamiki raspredelennykh rotorov”, Matematika v Yaroslavskom universitete, Sbornik obzornykh statei k 25-letiyu matematicheskogo fakulteta, Yaroslavl, 2001, 157–182 | MR

[3] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp. | MR | Zbl

[4] Vibratsii v tekhnike, Spravochnik v 6 tomakh, v. 1, Mashinostroenie, M., 1978, 352 pp.

[5] Yu. I. Neimark, “$\mathcal{D}$-razbienie prostranstva kvazipolinomov (k ustoichivosti linearizovannykh raspredelennykh sistem)”, PMM, 13:4 (1949), 655–667 | MR

[6] E. P. Kubyshkin, “Parametricheskii rezonans v lineinykh sistemakh s posledeistviem”, Issledovaniya po ustoichivosti i teorii kolebanii, Mezhvuzovskii tematicheskii sbornik, Yaroslavl, 1976, 43–76

[7] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Nauka, M., 1985, 376 pp. | MR

[8] D. S. Glyzin, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2008611464. Paket programm dlya analiza dinamicheskikh sistem “Tracer”. Zayavka No 2008610548 ot 14.02.2008. Zaregistrirovano v Reestre programm dlya EVM 24.03.2008