Dynamical properties of a model for the passive mode locking
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local dynamics of a model for the passive mode locking in semiconductor lasers. In critical cases special equations (normal forms) were built. The existence of multistability is shown.
Keywords: passive mode locking; delay; singular perturbation; normal form.
@article{MAIS_2011_18_1_a2,
     author = {I. S. Kashchenko},
     title = {Dynamical properties of a model for the passive mode locking},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a2/}
}
TY  - JOUR
AU  - I. S. Kashchenko
TI  - Dynamical properties of a model for the passive mode locking
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 32
EP  - 36
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a2/
LA  - ru
ID  - MAIS_2011_18_1_a2
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%T Dynamical properties of a model for the passive mode locking
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 32-36
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a2/
%G ru
%F MAIS_2011_18_1_a2
I. S. Kashchenko. Dynamical properties of a model for the passive mode locking. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 32-36. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a2/

[1] A. Vladimirov, D. Turaev, “Model for passive mode locking in semiconductor lasers”, Phys. Rev. A, 72 (2005), 033808 | DOI

[2] M. Nizette, D. Rachinskii, A. G. Vladimirov, M. Wolfrum, “Pulse interaction via gain and loss dynamics in passive mode-locking”, Physica D, 218:1 (2006), 95–104 | DOI | MR | Zbl

[3] I. S. Kaschenko, “Asimptoticheskii analiz povedeniya reshenii uravneniya s bolshim zapazdyvaniem”, Doklady Akademii Nauk, 421:5 (2008), 586–589

[4] I. S. Kaschenko, “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:12 (2008), 2141–2150 | MR

[5] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii i dr., Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl

[6] E. V. Grigoreva, I. S. Kaschenko, S. A. Kaschenko, “Multistabilnost v modeli lazera s bolshim zapazdyvaniem”, Modelirovanie i analiz informatsionnykh sistem, 17:2 (2010), 17–27