Geometric estimates in the polynomial interpolation
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 142-148
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove some new inequalities for the norms of projections due to the polynomial interpolation of continuous functions of $n$ variables.
Keywords:
functions of $n$ variables; polynomial interpolation; projection; norm; homothety.
@article{MAIS_2011_18_1_a12,
author = {M. V. Nevskii},
title = {Geometric estimates in the polynomial interpolation},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {142--148},
year = {2011},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a12/}
}
M. V. Nevskii. Geometric estimates in the polynomial interpolation. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 142-148. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a12/
[1] M. B. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Model. i analiz infopm. sistem, 13:2 (2006), 16–29
[2] M. B. Nevskii, “Neravenstva dlya norm interpolyatsionnykh proektorov”, Model. i analiz infopm. sistem, 15:3 (2008), 28–37
[3] M. B. Nevskii, “Ob odnom sootnoshenii dlya minimalnoi normy interpolyatsionnogo proektora”, Model. i analiz infopm. sistem, 16:1 (2009), 24–43
[4] M. B. Nevskii, “Ob odnom svoistve $n$-mernogo simpleksa”, Mat. zametki, 87:4 (2010), 580–593 | MR | Zbl
[5] S. Pashkovskii, Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983, 384 pp. | MR