Time scales and the asymptotics for the solutions of discrete adiabatic oscillators
Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 5-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a method of averaging for the study of linear systems of dynamic equations on time scales. We use the obtained results to construct the asymptotics for the solutions of some equations of discrete adiabatic oscillators.
Keywords: discrete adiabatic oscillator; time scale; method of averaging; asymptotics.
@article{MAIS_2011_18_1_a0,
     author = {P. N. Nesterov},
     title = {Time scales and the asymptotics for the solutions of discrete adiabatic oscillators},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a0/}
}
TY  - JOUR
AU  - P. N. Nesterov
TI  - Time scales and the asymptotics for the solutions of discrete adiabatic oscillators
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2011
SP  - 5
EP  - 27
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a0/
LA  - ru
ID  - MAIS_2011_18_1_a0
ER  - 
%0 Journal Article
%A P. N. Nesterov
%T Time scales and the asymptotics for the solutions of discrete adiabatic oscillators
%J Modelirovanie i analiz informacionnyh sistem
%D 2011
%P 5-27
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a0/
%G ru
%F MAIS_2011_18_1_a0
P. N. Nesterov. Time scales and the asymptotics for the solutions of discrete adiabatic oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 18 (2011) no. 1, pp. 5-27. http://geodesic.mathdoc.fr/item/MAIS_2011_18_1_a0/

[1] P. N. Nesterov, “Ob ustoichivosti reshenii nekotorykh uravnenii iz klassa adiabaticheskikh ostsillyatorov”, Modelirovanie i analiz informatsionnykh sistem, 15:2 (2008), 10–17

[2] V. Burd, P. Nesterov, “Parametric resonance in adiabatic oscillators”, Results in Mathematics, 58:1-2 (2010), 1–15 | DOI | MR | Zbl

[3] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958, 475 pp.

[4] P. N. Nesterov, “Asimptoticheskoe predstavlenie reshenii sistem lineinykh raznostnykh uravnenii i metod usredneniya”, Modelirovanie i analiz informatsionnykh sistem, 14:2 (2007), 63–67

[5] Z. Benzaid, D. A. Lutz, “Asymptotic representation of solutions of perturbed systems of linear difference equations”, Studies in Appl. Math., 77 (1987), 195–221 | MR | Zbl

[6] B. Aulbach, S. Hilger, “Linear dynamic processes with inhomogeneous time scale”, Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990), Math. Res. Akademie Verlag, 59, Berlin, 1990, 9–20 | MR | Zbl

[7] S. Hilger, “Analysis on measure chains — a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | MR | Zbl

[8] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2003 | MR | Zbl

[9] M. Bohner, D. A. Lutz, “Asymptotic behavior of dynamic equations on time scales”, Journal of Difference Equations and Applications, 7:1 (2001), 21–50 | DOI | MR | Zbl

[10] S. Bodine, D. A. Lutz, “Asymptotic solutions and error estimates for linear systems of difference and differential equations”, Journal of Mathematical Analysis and Applications, 290 (2004), 343–362 | DOI | MR | Zbl

[11] F. R. Gantmakher, Teoriya matrits, FIZMATLIT, M., 2004, 560 pp.