@article{MAIS_2010_17_3_a5,
author = {A. S. Snyatkov},
title = {On decidability of the theory $\mathrm{Th}(\omega,0,1,<,+,f_0,\dots,f_n)$},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {72--90},
year = {2010},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a5/}
}
A. S. Snyatkov. On decidability of the theory $\mathrm{Th}(\omega,0,1,<,+,f_0,\dots,f_n)$. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 72-90. http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a5/
[1] Dzh. Bulos, R. Dzheffri, Vychislimost i logika, Mir, M., 1994
[2] N. K. Vereschagin, A. Shen, Yazyki i ischisleniya, MTsNMO, M., 2002
[3] A. L. Semënov, “O nekotorykh rasshireniyakh arifmetiki slozheniya naturalnykh chisel”, Izv. AN SSSR, 43:5 (1979), 1175–1195 | MR | Zbl
[4] A. L. Semënov, “Logicheskie teorii odnomestnykh funktsii na naturalnom ryade”, Izv. AN SSSR, 47:3 (1983), 623–658 | MR
[5] A. S. Snyatkov, “Razreshimost teorii $T_c=\mathrm{Th}(\omega,0,1,,+,c^x,\mathfrak C^x)$”, Vestnik TvGU ser. Prikl. matem., 5:35 (2007), 113–121
[6] A. S. Snyatkov, “Razreshimost teorii $T_f=\mathrm{Th}(\omega,0,1,,+,f(x),F(x))$”, Vestnik TvGU ser. Prikl. matem., 14:34 (2008), 39–51
[7] W. Ackermann, “Zum Hilbertschen Aufbau der reellen Zahlen”, Mathematische Annalen, 99 (1928), 118–133 | DOI | MR | Zbl