On decidability of the theory $\mathrm{Th}(\omega,0,1,,+,f_0,\dots,f_n)$
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 72-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider theories which are obtained from the Semenov arithmetics introducing functions $f_i$, $i>0$. They are called “hyperfunctions” and they are obtained when we iterate an addition-connected function. We have proved, that such theories are model complete. It is also shown, that these theories are decidable when the condition of effective periodicity is satisfied for hyperfunctions.
Keywords: Semenov arithmetic, hyperfunction, Ackermann function.
@article{MAIS_2010_17_3_a5,
     author = {A. S. Snyatkov},
     title = {On decidability of the theory $\mathrm{Th}(\omega,0,1,<,+,f_0,\dots,f_n)$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {72--90},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a5/}
}
TY  - JOUR
AU  - A. S. Snyatkov
TI  - On decidability of the theory $\mathrm{Th}(\omega,0,1,<,+,f_0,\dots,f_n)$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 72
EP  - 90
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a5/
LA  - ru
ID  - MAIS_2010_17_3_a5
ER  - 
%0 Journal Article
%A A. S. Snyatkov
%T On decidability of the theory $\mathrm{Th}(\omega,0,1,<,+,f_0,\dots,f_n)$
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 72-90
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a5/
%G ru
%F MAIS_2010_17_3_a5
A. S. Snyatkov. On decidability of the theory $\mathrm{Th}(\omega,0,1,<,+,f_0,\dots,f_n)$. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 72-90. http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a5/

[1] Dzh. Bulos, R. Dzheffri, Vychislimost i logika, Mir, M., 1994

[2] N. K. Vereschagin, A. Shen, Yazyki i ischisleniya, MTsNMO, M., 2002

[3] A. L. Semënov, “O nekotorykh rasshireniyakh arifmetiki slozheniya naturalnykh chisel”, Izv. AN SSSR, 43:5 (1979), 1175–1195 | MR | Zbl

[4] A. L. Semënov, “Logicheskie teorii odnomestnykh funktsii na naturalnom ryade”, Izv. AN SSSR, 47:3 (1983), 623–658 | MR

[5] A. S. Snyatkov, “Razreshimost teorii $T_c=\mathrm{Th}(\omega,0,1,,+,c^x,\mathfrak C^x)$”, Vestnik TvGU ser. Prikl. matem., 5:35 (2007), 113–121

[6] A. S. Snyatkov, “Razreshimost teorii $T_f=\mathrm{Th}(\omega,0,1,,+,f(x),F(x))$”, Vestnik TvGU ser. Prikl. matem., 14:34 (2008), 39–51

[7] W. Ackermann, “Zum Hilbertschen Aufbau der reellen Zahlen”, Mathematische Annalen, 99 (1928), 118–133 | DOI | MR | Zbl