Variational inequalities and the principle of virtual displacements
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a solution of the inclusion $0\in A(x)+N_Q(x)$ is proved, in which $A$ is a multivalued pseudomonotone operator from the reflexive space $V$ to the conjugate space to it $V^*$, $N_Q$ is a normal cone to the weakly compact and, generally speaking, not convex set $Q \subset V$, with nonzero euler characterization $\chi(Q)$.
Keywords: operator inclusion, variational inequality, multivalued mapping, analytical statics.
@article{MAIS_2010_17_3_a3,
     author = {N. A. Dem'yankov},
     title = {Variational inequalities and the principle of virtual displacements},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/}
}
TY  - JOUR
AU  - N. A. Dem'yankov
TI  - Variational inequalities and the principle of virtual displacements
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 48
EP  - 57
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/
LA  - ru
ID  - MAIS_2010_17_3_a3
ER  - 
%0 Journal Article
%A N. A. Dem'yankov
%T Variational inequalities and the principle of virtual displacements
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 48-57
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/
%G ru
%F MAIS_2010_17_3_a3
N. A. Dem'yankov. Variational inequalities and the principle of virtual displacements. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 48-57. http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/

[1] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[2] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[3] J. P. Gossez, “Surjectivity Results for Pseudo-Monotone Mappings in Complementary Systems”, Journal of Math. Anal. and Appl., 53 (1976), 484–494 | DOI | MR | Zbl

[4] V. S. Klimov, “Topologicheskie kharakteristiki mnogoznachnykh otobrazhenii i lipshitsevykh funktsionalov”, Izv. RAN, Ser. mat., 72, no. 4, 2008, 97–120 | MR

[5] F. E. Browder, “Pseudo-monotone operators and the direct method of the calculus of variations”, Arch. Ration. Mech. Anal., 38 (1970), 268–277 | DOI | MR | Zbl

[6] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[7] I. V. Skrypnik, Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR

[8] V. S. Klimov, “Beskonechnomernyi variant teoremy Puankare–Khopfa i gomologicheskie kharakteristiki funktsionalov”, Matem. sb., 192:1 (2001), 51–66 | MR | Zbl

[9] I. P. Ryazantseva, Izbrannye glavy teorii operatorov monotonnogo tipa, Izd-vo NGTU, Nizhnii Novgorod, 2008

[10] U. Massi, Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[11] S. L. Trojanski, “On locallu uniform convexs and differentiable norms in certain nonseparable Banach Spaces”, Studia Math., 37 (1970), 173–180 | MR

[12] N. G. Chetaev, Teoreticheskaya mekhanika, Nauka, M., 1987 | MR | Zbl