Variational inequalities and the principle of virtual displacements
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 48-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of a solution of the inclusion $0\in A(x)+N_Q(x)$ is proved, in which $A$ is a multivalued pseudomonotone operator from the reflexive space $V$ to the conjugate space to it $V^*$, $N_Q$ is a normal cone to the weakly compact and, generally speaking, not convex set $Q \subset V$, with nonzero euler characterization $\chi(Q)$.
Keywords:
operator inclusion, variational inequality, multivalued mapping, analytical statics.
@article{MAIS_2010_17_3_a3,
author = {N. A. Dem'yankov},
title = {Variational inequalities and the principle of virtual displacements},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {48--57},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/}
}
TY - JOUR AU - N. A. Dem'yankov TI - Variational inequalities and the principle of virtual displacements JO - Modelirovanie i analiz informacionnyh sistem PY - 2010 SP - 48 EP - 57 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/ LA - ru ID - MAIS_2010_17_3_a3 ER -
N. A. Dem'yankov. Variational inequalities and the principle of virtual displacements. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 48-57. http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a3/