Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2010_17_3_a1, author = {Yu. A. Belov}, title = {Composite reductions for {Kripke} models}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {29--37}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a1/} }
Yu. A. Belov. Composite reductions for Kripke models. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 29-37. http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a1/
[1] E. M. Klark, O. Gramberg, D. Peled, Verifikatsiya modelei programm: Model Checking, MTsNMO, M., 2002
[2] I. V. Tarasyuk, Ekvivalentnosti dlya povedencheskogo analiza parallelnykh i raspredelënnykh vychislitelnykh sistem, GEO, Novosibirsk, 2007
[3] Ph. Schnoeblin, N. Sidorova, “Bisimulation and reduction of Petri nets”, Proc. $21^{th}$ Int. Conf. Appl. and Theory of Petri Nets (Aarhus, Denmark), June, 2000
[4] R. Czerwinski, A polynomial time algorithm for graph isomorphism, 2008, arXiv: 0711.2010v4[cs.CC]
[5] Yu. A. Belov, “Korrektnye otobrazheniya sistem s perekhodami”, Modelirovanie i analiz informatsionnykh sistem, 8:1 (2001), 47–49
[6] Yu. A. Belov, “Konechnye gruppy avtomorfizmov setei Petri”, Modelirovanie i analiz informatsionnykh sistem, 15:4 (2008), 3–9
[7] Yu. A. Belov, “Teorema ob epimorfizme dlya sistem perekhodov”, Modelirovanie i analiz informatsionnykh sistem, 11:2 (2004), 42–43
[8] Algebraicheskaya teoriya avtomatov, yazykov i polugrupp: Sb. statei, ed. M. Arbiba, Statistika, M., 1975 | MR
[9] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, V. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl
[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl
[11] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, V. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990, 383 pp. | MR | Zbl