Composite reductions for Kripke models
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 29-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kripke factor-model concept is investigated. It is shown, that every factor-model is represented as a decomposition of several special factor-models, which groups of automorphisms are primes. Moreover, we show, that every nite group is isomorphic for a group of automorphisms of a certain Kripke model.
Keywords: Kripke model, factor-model, automorphisms of a Kripke model.
@article{MAIS_2010_17_3_a1,
     author = {Yu. A. Belov},
     title = {Composite reductions for {Kripke} models},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a1/}
}
TY  - JOUR
AU  - Yu. A. Belov
TI  - Composite reductions for Kripke models
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 29
EP  - 37
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a1/
LA  - ru
ID  - MAIS_2010_17_3_a1
ER  - 
%0 Journal Article
%A Yu. A. Belov
%T Composite reductions for Kripke models
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 29-37
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a1/
%G ru
%F MAIS_2010_17_3_a1
Yu. A. Belov. Composite reductions for Kripke models. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 3, pp. 29-37. http://geodesic.mathdoc.fr/item/MAIS_2010_17_3_a1/

[1] E. M. Klark, O. Gramberg, D. Peled, Verifikatsiya modelei programm: Model Checking, MTsNMO, M., 2002

[2] I. V. Tarasyuk, Ekvivalentnosti dlya povedencheskogo analiza parallelnykh i raspredelënnykh vychislitelnykh sistem, GEO, Novosibirsk, 2007

[3] Ph. Schnoeblin, N. Sidorova, “Bisimulation and reduction of Petri nets”, Proc. $21^{th}$ Int. Conf. Appl. and Theory of Petri Nets (Aarhus, Denmark), June, 2000

[4] R. Czerwinski, A polynomial time algorithm for graph isomorphism, 2008, arXiv: 0711.2010v4[cs.CC]

[5] Yu. A. Belov, “Korrektnye otobrazheniya sistem s perekhodami”, Modelirovanie i analiz informatsionnykh sistem, 8:1 (2001), 47–49

[6] Yu. A. Belov, “Konechnye gruppy avtomorfizmov setei Petri”, Modelirovanie i analiz informatsionnykh sistem, 15:4 (2008), 3–9

[7] Yu. A. Belov, “Teorema ob epimorfizme dlya sistem perekhodov”, Modelirovanie i analiz informatsionnykh sistem, 11:2 (2004), 42–43

[8] Algebraicheskaya teoriya avtomatov, yazykov i polugrupp: Sb. statei, ed. M. Arbiba, Statistika, M., 1975 | MR

[9] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, V. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl

[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[11] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, V. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990, 383 pp. | MR | Zbl