Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2010_17_2_a5, author = {A. V. Nikolaev}, title = {On nonintegral vertices of {3-SAT} problem relaxation polytope}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {99--111}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a5/} }
A. V. Nikolaev. On nonintegral vertices of 3-SAT problem relaxation polytope. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 2, pp. 99-111. http://geodesic.mathdoc.fr/item/MAIS_2010_17_2_a5/
[1] G. B. Dantzig, R. Fulkerson, S. M. Johnson, “Solution of a large-scale traveling salesman problem”, Operations Research, 2 (1954), 393–410 | DOI | MR
[2] M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[3] V. A. Bondarenko, A. N. Maksimenko, Geometricheskie konstruktsii i slozhnost v kombinatornoi optimizatsii, LKI, M., 2008, 184 pp.
[4] M. Deza, M. Loran, Geometriya razrezov i metrik, MTsNMO, M., 2001, 736 pp.
[5] V. A. Bondarenko , B. V. Uryvaev, “Ob odnoi zadache tselochislennoi optimizatsii”, Avtomatika i telemekhanika, 2007, no. 6, 18–23 | MR | Zbl
[6] V. A. Bondarenko, “Ob odnom kombinatornom mnogogrannike”, Modelirovanie i analiz vychislitelnykh sistem, Sb. nauch. tr., Yarosl. gos. un-t, Yaroslavl, 1987, 133–134 | MR
[7] M. V. Padberg, “The Boolean quadratic polytope: some characteristics, facets and relatives”, Mathematical Program., 45 (1989), 139–172 | DOI | MR | Zbl
[8] O. A. Dunaeva, A. V. Nikolaev, “Nekotorye svoistva relaksatsionnogo mnogogrannika zadachi 3-vypolnimost”, Trudy pyatoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem, Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 2008, 37–43
[9] Thomas Christof, Andreas Loebel, PORTA: POlyhedron Representation Transformation Algorithm 1.4.0, The Konrad-Zuse-Zentrum fur Informationstechnik Berlin, http://www.zib.de/Optimization/Software/Porta/