On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients
Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 93-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a formalism of constructing a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic optimal control problem with discontinuous coefficients. This formalism is based on immediate substituting a postulated asymptotic expansion of boundary layer type for the solution into the problem condition and on defining four optimal control problems for finding asymptotics terms. The unique solvability of the problems, the solutions of which form the zero order approximation for the asymptotic solution, is proven. An illustrative example is given.
Keywords: linear-quadratic optimal control problem, discontinuous coefficients, asymptotic expansion.
Mots-clés : singular perturbations
@article{MAIS_2010_17_1_a7,
     author = {G. A. Kurina and Nguy\^en Thi Ho\`ai},
     title = {On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {93--116},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a7/}
}
TY  - JOUR
AU  - G. A. Kurina
AU  - Nguyên Thi Hoài
TI  - On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2010
SP  - 93
EP  - 116
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a7/
LA  - ru
ID  - MAIS_2010_17_1_a7
ER  - 
%0 Journal Article
%A G. A. Kurina
%A Nguyên Thi Hoài
%T On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients
%J Modelirovanie i analiz informacionnyh sistem
%D 2010
%P 93-116
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a7/
%G ru
%F MAIS_2010_17_1_a7
G. A. Kurina; Nguyên Thi Hoài. On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients. Modelirovanie i analiz informacionnyh sistem, Tome 17 (2010) no. 1, pp. 93-116. http://geodesic.mathdoc.fr/item/MAIS_2010_17_1_a7/

[1] S. V. Belokopytov, M. G. Dmitriev, “Direct scheme in optimal control problems with fast and slow motions”, Systems and Control Letters, 8:2 (1986), 129–135 | DOI | MR | Zbl

[2] S. V. Belokopytov, M. G. Dmitriev, “Reshenie klassicheskikh zadach optimalnogo upravleniya s pogransloem”, Avtomatika i telemekhanika, 1989, no. 7, 71–82 | MR | Zbl

[3] M. G. Dmitriev, G. A. Kurina, “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl

[4] L. T. Aschepkov, Optimalnoe upravlenie razryvnymi sistemami, Nauka, Novosibirsk, 1987

[5] I. Yu. Pokornaya, Metod kollokatsii resheniya singulyarno vozmuschennykh kraevykh zadach s pomoschyu kubicheskikh splainov minimalnogo defekta, Avtoreferat dis. ... kand. fiz.-mat. nauk, Voronezh, 1996

[6] T. A. Melnik, “Asimptotika reshenii razryvnykh singulyarno vozmuschënnykh kraevykh zadach”, Ukrainskii matematicheskii zhurnal, 51:6 (1999), 861–864 | MR

[7] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[8] Ya. Lellep, Osnovy matematicheskoi teorii optimalnogo upravleniya, Tartuskii gosudarstvennyi universitet, Tartu, 1981