Normalization of equation with linear distributed delay
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 4, pp. 109-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties of the dynamics of a differential equation with the linear distributed delay is studied. In critical cases, which all have an infinite dimension, special equations – normal forms – were built.
Keywords: delay, normal form.
Mots-clés : singular perturbation
@article{MAIS_2009_16_4_a9,
     author = {I. S. Kashchenko},
     title = {Normalization of equation with linear distributed delay},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {109--116},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a9/}
}
TY  - JOUR
AU  - I. S. Kashchenko
TI  - Normalization of equation with linear distributed delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 109
EP  - 116
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a9/
LA  - ru
ID  - MAIS_2009_16_4_a9
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%T Normalization of equation with linear distributed delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 109-116
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a9/
%G ru
%F MAIS_2009_16_4_a9
I. S. Kashchenko. Normalization of equation with linear distributed delay. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 4, pp. 109-116. http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a9/

[1] P. S. Landa, Avtokolebaniya v raspredelennykh sistemakh, Nauka, M., 1983 | MR | Zbl

[2] A. S. Dmitriev, V. Ya. Kislov, Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989 | MR | Zbl

[3] S. P. Kuznetsov, “Slozhnaya dinamika generatorov s zapazdyvayuschei obratnoi svyazyu (obzor)”, Izv. vuzov. Radiofizika, 25:12 (1982), 1410–1428

[4] T. Kilias, K. Kutzer, A. Moegel, W. Schwarz, “Electromic chaos generators — design and applications”, International Journal of Electronics, 79:6 (1995), 737–753 | DOI

[5] S. A. Kaschenko, “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Dif. uravneniya, 25:8 (1989), 1448–1451 | MR

[6] S. A. Kaschenko, “Uravneniya Ginzburga-Landau — normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zhurnal vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR | Zbl

[7] S. A. Kaschenko, “Lokalnaya dinamika nelineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Dif. uravneniya, 35:10 (1999), 1343–1355

[8] Yu. L. Maistrenko, E. N. Romanenko, A. N. Sharkovskii, Raznostnye uravneniya i ikh prilozheniya, Naukova Dumka, Kiev, 1986 | MR

[9] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Knizhnyi dom “LIBROKOM”, M., 2009

[10] I. S. Kaschenko, “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zhurnal vychisl. matem. i matem. fiz., 48:12 (2008), 2141–2150 | MR

[11] I. S. Kaschenko, “Asimptoticheskii analiz povedeniya reshenii uravneniya s bolshim zapazdyvaniem”, Doklady Akademii Nauk, 421:5 (2008), 586–589