Spatially inhomogeneous periodic solutions in distributed Hutchinson equation
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 4, pp. 77-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics of spatially inhomogeneous periodic solutions of the complex spatially distributed Hutchinson equation with periodic boundary conditions are presented. It is shown that such solutions are observable in a numerical experiment.
Keywords: asymptotic methods, distributed Hutchinson equation, method of steps.
@article{MAIS_2009_16_4_a6,
     author = {S. D. Glyzin and S. A. Kashchenko and A. S. Polstyanov},
     title = {Spatially inhomogeneous periodic solutions in distributed {Hutchinson} equation},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {77--85},
     year = {2009},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a6/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - S. A. Kashchenko
AU  - A. S. Polstyanov
TI  - Spatially inhomogeneous periodic solutions in distributed Hutchinson equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 77
EP  - 85
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a6/
LA  - ru
ID  - MAIS_2009_16_4_a6
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A S. A. Kashchenko
%A A. S. Polstyanov
%T Spatially inhomogeneous periodic solutions in distributed Hutchinson equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 77-85
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a6/
%G ru
%F MAIS_2009_16_4_a6
S. D. Glyzin; S. A. Kashchenko; A. S. Polstyanov. Spatially inhomogeneous periodic solutions in distributed Hutchinson equation. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 4, pp. 77-85. http://geodesic.mathdoc.fr/item/MAIS_2009_16_4_a6/

[1] E. M. Wright, “A non-linear difference- differential equation”, J. Reine Angew. Math., 194 (1955) | MR | Zbl

[2] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=\{A-By(t-\tau)\}y(t)$”, Contributions to the Theory of Non-linear Oscillations IV, Annals of Math. Studies, 41, Prinston University Press, Prinston, 1958 | MR

[3] Robert M. May, Stability and complexity in Model ecosystems, Prinston, New-Jersey, 1973

[4] R. E. Bellman, A survey of the mathematical theory of time-lag, retarded control, and hereditary processes, the Rand Corporation, Santa Monica, California, 1954 | MR

[5] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl, 1981

[6] S. A. Kaschenko, “Prostranstvenno-neodnorodnye struktury v prosteishikh modelyakh s zapazdyvaniem i diffuziei”, Matematicheskoe modelirovanie, 2:9 (1990), 49–69 | MR | Zbl

[7] A. Yu. Kolesov, N 1, IMK, Vilnyus, 1985

[8] M. Bestehorn, E. V. Grigorieva, S. A. Kaschenko, “Spatio-temporal structures in a biological model with delay and diffusion”, The Third International Conference “Tools for mathematical modelling” (18–23 June 2001, Saint Petersburg)

[9] S. A. Kaschenko, Issledovanie asimptotiki periodicheskikh reshenii avtonomnykh parabolicheskikh uravnenii s maloi diffuziei, Dep. VINITI 15.01.85 No 388-85, 26 pp.

[10] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR