Difference approximations of ``reaction--diffusion'' equation on a segment
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 96-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analysed. It is shown by means of numerical methods that as the number of oscillators in the chain increases, the Lyapunov dimention growth is close to linear. The extensive computations performed for difference model of Ginsburg-Landau equation illustrate this result and determine the applicability limits for asymptotic methods.
Keywords: chaotic attractor, autogenerator, Lyapunov's dimension
Mots-clés : autooscillations, bifurcations, invariant torus.
@article{MAIS_2009_16_3_a9,
     author = {S. D. Glyzin},
     title = {Difference approximations of ``reaction--diffusion'' equation on a segment},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {96--115},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/}
}
TY  - JOUR
AU  - S. D. Glyzin
TI  - Difference approximations of ``reaction--diffusion'' equation on a segment
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 96
EP  - 115
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/
LA  - ru
ID  - MAIS_2009_16_3_a9
ER  - 
%0 Journal Article
%A S. D. Glyzin
%T Difference approximations of ``reaction--diffusion'' equation on a segment
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 96-115
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/
%G ru
%F MAIS_2009_16_3_a9
S. D. Glyzin. Difference approximations of ``reaction--diffusion'' equation on a segment. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 96-115. http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/

[1] G. D. Abarbanel, M. I. Rabinovich, A. Selverston, M. V. Bazhenov, R. Khuerta, M. M. Suschik, L. L. Rubchinskii, “Sinkhronizatsiya v neironnykh ansamblyakh”, Usp. Fiz. nauk, 166:4 (1996), 363–390

[2] B. C. Anischenko, Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990 | MR

[3] A. V. Gaponov-Grekhov, M. I. Rabinovich, I. M. Starobinets, “Dinamicheskaya model prostranstvennogo razvitiya turbulentnosti”, Pisma v ZhETF, 39:12 (1984), 561–564

[4] A. V. Gaponov-Grekhov, M. I. Rabinovich, “Avtostruktury. Khaoticheskaya dinamika ansamblei”, Nelineinye volny. Struktury i bifurkatsii, Nauka, M., 1987, 7–44 | MR

[5] M. I. Rabinovich, P. Varona, Allen I. Selverston, Henry D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Mod. Phys., 78 (2006), 1213–1265 | DOI

[6] P. S. Landa, Nelineinye kolebaniya i volny, Nauka, M., 1997, 496 pp. | MR

[7] Yu. I. Neimark, P. S. Landa, Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987 | MR

[8] S. A. Kaschenko, “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Dif. uravneniya, 25:2 (1989), 262–270 | MR

[9] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Khaoticheskaya bufernost v tsepochkakh svyazannykh ostsillyatorov”, Differentsialnye uravneniya, 41:1 (2005), 41–49 | MR | Zbl

[10] A. Yu. Kolesov, “Opisanie fazovoi neustoichivosti sistemy garmonicheskikh ostsillyatorov, slabo svyazannykh cherez diffuziyu”, Dokl. AN SSSR, 300:1 (1988), 831–835 | MR

[11] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmos. Sci., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] D. Ruelle, F. Takens, “On the nature of tubulence”, Comm. Math. Phys., 20 (1971), 167–192 | DOI | MR | Zbl

[13] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, “O klassifikatsii reshenii sistemy nelineinykh diffuzionnykh uravnenii v okrestnosti tochki bifurkatsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 28, VINITI, 1986, 207–313 | MR | Zbl

[14] S. D. Glyzin, “Stsenarii fazovykh perestroek odnoi konechnoraznostnoi modeli uravneniya “reaktsiya – diffuziya””, Differentsialnye uravneniya, 33:6 (1997), 805–811 | MR | Zbl

[15] S. D. Glyzin, “Chislennoe obosnovanie gipotezy Landau - Kolesova o prirode turbulentnosti”, Matematicheskie modeli v biologii i meditsine, 1989, no. 3, 31–36, In-t matematiki i kibernetiki AN Lit.SSR, Vilnyus | MR

[16] I. S. Aronson, A. V. Gaponov-Grekhov, M. I. Rabinovich, “Razvitie khaosa v ansamblyakh dinamicheskikh struktur”, ZhETF, 89:1 (1985), 92–105

[17] A. V. Gaponov-Grekhov, M. I. Rabinovich, I. M. Starobinets, “O rozhdenii mnogomernogo khaosa v aktivnykh reshetkakh”, DAN SSSR, 279:3 (1984), 596–601 | MR

[18] Yu. S. Kolesov, V. V. Maiorov, “Prostranstvennaya i vremennaya samoorganizatsiya v odnovidovom biotsenoze”, Dinamika biologicheskikh populyatsii, GGU, Gorkii, 1986, 3–13

[19] Yu. S. Kolesov, “Matematicheskie modeli ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1979, 3–40 | MR | Zbl

[20] Yu. S. Kolesov, “Metod kvazinormalnykh form v zadache ob ustanovivshikhsya rezhimakh parabolicheskikh sistem s maloi diffuziei”, Ukr. matem. zhurn., 39:1 (1987), 28–34 | MR

[21] Yu. A. Mitropolskii, O. B. Lykova, Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[22] D. S. Glyzin, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2008611464, Paket programm dlya analiza dinamicheskikh sistem “Tracer”. Zayavka No 2008610548 ot 14.02.2008 g. Zaregistrirovano v Reestre programm dlya EVM 24.03.2008 g.

[23] M. I. Rabinovich, M. M. Suschik, “Regulyarnaya i khaoticheskaya dinamika struktur v techeniyakh zhidkosti”, Usp. Fiz. nauk, 160:1 (1990), 3–64 | MR

[24] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl

[25] V. S. Anischenko, G. A. Okrokvertskhov, G. I. Strelkova, “Statisticheskie svoistva dinamicheskogo khaosa”, Usp. Fiz. nauk, 175:2 (2005), 163–179 | Zbl

[26] G. Benettin, L. Galgani, J. M. Strelcyn, “Kolmogorov entropy and numerical experiments”, Phys. Rev. A, 14 (1976), 2338–2345 | DOI

[27] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, “Determining Lyapunov exponents from a time series”, Physica D, 16 (1985), 285–317 | DOI | MR | Zbl

[28] G. G. Malinetskii, A. B. Potapov, “O vychislenii razmernostei strannykh attraktorov”, Zhurn. vychisl. matem. i matem. fiz., 28:7 (1988), 1021–1037 | MR

[29] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Metod dinamicheskoi perenormirovki dlya nakhozhdeniya maksimalnogo lyapunovskogo pokazatelya khaoticheskogo attraktora”, Differentsialnye uravneniya, 41:2 (2005), 268–273 | MR | Zbl

[30] J. R. Dormand, P. J. Prince, “A Family of Embedded Runge - Kutta Formulae”, J. Comp. Appl. Math., 6 (1980), 19–26 | DOI | MR | Zbl