Difference approximations of ``reaction--diffusion'' equation on a segment
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 96-115

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analysed. It is shown by means of numerical methods that as the number of oscillators in the chain increases, the Lyapunov dimention growth is close to linear. The extensive computations performed for difference model of Ginsburg-Landau equation illustrate this result and determine the applicability limits for asymptotic methods.
Keywords: chaotic attractor, autogenerator, Lyapunov's dimension
Mots-clés : autooscillations, bifurcations, invariant torus.
@article{MAIS_2009_16_3_a9,
     author = {S. D. Glyzin},
     title = {Difference approximations of ``reaction--diffusion'' equation on a segment},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {96--115},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/}
}
TY  - JOUR
AU  - S. D. Glyzin
TI  - Difference approximations of ``reaction--diffusion'' equation on a segment
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 96
EP  - 115
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/
LA  - ru
ID  - MAIS_2009_16_3_a9
ER  - 
%0 Journal Article
%A S. D. Glyzin
%T Difference approximations of ``reaction--diffusion'' equation on a segment
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 96-115
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/
%G ru
%F MAIS_2009_16_3_a9
S. D. Glyzin. Difference approximations of ``reaction--diffusion'' equation on a segment. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 96-115. http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a9/