On the Jackson type inequality in the dyadic BMO space
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 29-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the direct theorem of the approximation theory for functions from the dyadic Besov space is proved. Together with the inverse theorem, it allows to solve an interpolation problem between dyadic $BMO$ and the dyadic Besov space.
Keywords: Jackson inequality, approximation
Mots-clés : dyadic $BMO$, interpolation.
@article{MAIS_2009_16_3_a3,
     author = {I. P. Irodova},
     title = {On the {Jackson} type inequality in the dyadic {BMO} space},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {29--46},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a3/}
}
TY  - JOUR
AU  - I. P. Irodova
TI  - On the Jackson type inequality in the dyadic BMO space
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 29
EP  - 46
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a3/
LA  - ru
ID  - MAIS_2009_16_3_a3
ER  - 
%0 Journal Article
%A I. P. Irodova
%T On the Jackson type inequality in the dyadic BMO space
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 29-46
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a3/
%G ru
%F MAIS_2009_16_3_a3
I. P. Irodova. On the Jackson type inequality in the dyadic BMO space. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 3, pp. 29-46. http://geodesic.mathdoc.fr/item/MAIS_2009_16_3_a3/

[1] M. Sh. Birman, M. Z. Solomyak, “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Mat. sbornik, 73:3 (1967), 331–355 | MR | Zbl

[2] I. P. Irodova, Sovmestnoe priblizhenie funktsii i ee proizvodnykh v $L_p([0,1]^n)$ s pomoschyu nelineinykh splainov, Rukopis predstavlena Yarosl. un-tom. 15 marta 1982, Dep. v VINITI No 1135-82, Yaroslavl, 1982, 23 pp. | Zbl

[3] Yu. A. Brudnyi, “Ratsionalnaya approksimatsiya i teorema vlozheniya”, DAN SSSR, 2:247 (1979), 269–272 | MR

[4] P. P. Petruschev, “Direct and converse theorems for spline and rational approximation and Besov spaces”, Function Spaces and Applications, Lund. Lecture Notes in Math., 1302, Springer-Verlag, Berlin, 1988, 363–377 | MR

[5] Yu. A. Brudnyi, I. P. Irodova, “Nelineinaya splain–approksimatsiya i $B$–prostranstva”, Tr. Mezhdunar. konf. po teorii priblizhenii, Nauka, M., 1987, 71–75

[6] Yu. A. Brudnyi, I. P. Irodova, “Nelineinaya splain-approksimatsiya i $B$-prostranstva”, Algebra i analiz, 4:4 (1992), 45–79 | MR | Zbl

[7] R. A. Devore, V. A. Popov, “Free multivariate splines”, Constr. Approx., 3 (1987), 239–248 | DOI | MR | Zbl

[8] R. A. Devore, B. Jawerth, V. A. Popov, “Compression of wavelet decompositions”, Amer. J. Math., 114 (1992), 737–785 | DOI | MR | Zbl

[9] R. A. Devore, P. P. Petruschev, X. M. Yu, “Nonlinear wavelet approximation in the space $C(R^d)$”, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 261–283 | MR | Zbl

[10] I. P. Irodova, “Diadicheskie prostranstva Besova”, Algebra i analiz, 12:3 (2000), 40–80 | MR

[11] I. P. Irodova, “Nekotorye svoistva diadicheskikh prostranstv Besova”, Funkts. pr-va. Diff. operatory. Problemy mat. obrazovaniya, Trudy mezhdunar. konf., 1, Univ. Druzhby narodov, M., 1998, 78–81

[12] Dzh. Garnet, Ogranichennye analiticheskie funktsii, Mir, M., 1980, 487 pp. | MR

[13] Y. Sagher, P. Shvartsman, “On the John–Str6mberg–Torehinsky Characterization of BMO”, Fourier Analysis and Applications, 4:4-5 (1998), 521–548 | DOI | MR | Zbl

[14] Yu. A. Brudnyi, M. I. Ganzburg, “Ob odnoi ekstremalnoi zadache dlya mnogochlenov $n$ peremennykh”, Izv. AN SSSR. Ser. mat., 37:2 (1973), 344–355 | MR

[15] R. A. Devore, V. A. Popov, “Interpolation of Besov Spaces”, Trans. Amer. Math. Soc., 305 (1988), 397–414 | DOI | MR | Zbl

[16] J. Peetre, G. Sparr, “Interpolation of normed Abelian groups”, Ann. Mat. Pura Appl., 92:4 (1972), 217–262 | MR | Zbl

[17] I. P. Irodova, “O neravenstve tipa neravenstva Bernshteina”, Modelirovanie i analiz informatsionnykh sistem, 15:4 (2008), 31–41

[18] Yu. A. Brudnyi, “Adaptivnaya approksimatsiya funktsii s osobennostyami”, Tr. MMO, 55, 1994, 123–185 | MR

[19] J. Peetre, E. Svensson, “On the Generalized Hardy's inequality of Mcgehee, Pigno and Smith and the problem of interpolation between BMO and Besov Space”, Math. Scand., 54 (1984), 221–241 | MR | Zbl