On Erd\H os--Szekeres problem for empty hexagons in the plane
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 22-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider a classical problem of Combinatorial Geometry of P. Erdős and G. Szekeres. The problem was posed in the 1930's. We investigate the minimum number $h(n)$ such, that for each $h(n)$-point set $A$ in general position in the plane there exists an $n$-point subset $B$ such, that the convex hull $C$ of $B$ is a convex empty $n$-gon, that is $(A\setminus B)\cap C=\emptyset$. Only recently T. Gerken has shown that $h(6)\infty$. He has established the inequality $h(6)\le 1717$. The main result of the paper is the following inequality $h(6)\le 463$.
Keywords: general position, Ramsey theory.
Mots-clés : convex polygons
@article{MAIS_2009_16_2_a1,
     author = {V. A. Koshelev},
     title = {On {Erd\H} {os--Szekeres} problem for empty hexagons in the plane},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {22--74},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a1/}
}
TY  - JOUR
AU  - V. A. Koshelev
TI  - On Erd\H os--Szekeres problem for empty hexagons in the plane
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 22
EP  - 74
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a1/
LA  - ru
ID  - MAIS_2009_16_2_a1
ER  - 
%0 Journal Article
%A V. A. Koshelev
%T On Erd\H os--Szekeres problem for empty hexagons in the plane
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 22-74
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a1/
%G ru
%F MAIS_2009_16_2_a1
V. A. Koshelev. On Erd\H os--Szekeres problem for empty hexagons in the plane. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 2, pp. 22-74. http://geodesic.mathdoc.fr/item/MAIS_2009_16_2_a1/

[1] M. Kholl, Kombinatorika, Mir, M., 1970 | MR

[2] P. Erdős, G.Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[3] P. Erdős, G. Szekeres, “On some extremum problems in elementary geometry”, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 3-4 (1961), 53–62 | MR | Zbl

[4] P. Erdős, “Some more problems in elementary geometry”, Austral. Math. Soc. Gaz., 5 (1978), 52–54 | MR | Zbl

[5] W. Morris, V. Soltan, “The Erdős–Szekeres problem on points in convex position”, Bulletin (new series) of the Amer. Math. Soc., 37:4 (2000), 437–458 | DOI | MR | Zbl

[6] F. P. Ramsey, “On a problem of formal logic”, Proc. London Math. Soc. Ser., 30 (1930), 264–286 | DOI

[7] Graham R.L., Rothschild B.L., Spencer J.H., Ramsey theory, Second Edition, John Wiley and Sons, NY, 1990 | MR | Zbl

[8] G. Szekeres, L. Peters, “Computer solution to the 17-point Erdős–Szekeres problem”, ANZIAM J., 48 (2006), 151–164 | DOI | MR | Zbl

[9] F. Chung, R. Graham, “Forced convex n-gons in the plane”, Discrete Comput. Geom., 19 (1998), 367–371 | DOI | MR | Zbl

[10] D. Kleitman, L. Pachter, “Finding convex sets among points in the plane”, Discrete Comput. Geom., 19 (1998), 405–410 | DOI | MR | Zbl

[11] G. Tóth, P. Valtr, “Note on the Erdős–Szekeres theorem”, Discrete Comput. Geom., 19 (1998), 457–459 | DOI | MR | Zbl

[12] G.Tóth, P. Valtr, “The Erdős–Szekeres theorem: upper bounds and related results”, Combinatorial and Computational geometry, 52, MSRI Publication, 2005, 557–568 | MR | Zbl

[13] H. Harborth, “Konvexe Fünfecke in ebenen Punktmengen”, Elem. Math., 33 (1978), 116–118 | MR | Zbl

[14] J. D. Horton, “Sets with no empty 7-gons”, Canad. Math. Bull., 26 (1983), 482–484 | DOI | MR | Zbl

[15] T. Gerken, “On empty convex hexagons in planar point set”, Discrete Comput. Geom., 39 (2008), 239–272 | DOI | MR | Zbl

[16] M. Overmars, B. Scholten, I. Vincent, “Sets without empty convex 6-gons”, Bull. European Assoc. Theor. Comput. Sci., 37 (1989), 160–168 | Zbl

[17] M. Overmars, “Finding sets of points without empty convex 6-gons”, Discrete Comput. Geom., 29 (2003), 153–158 | MR | Zbl