On a certain relation for the minimal norm of an interpolational projection
Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 24-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyse some relations for the minimal $C$-norm of a projection dealing with the linear interpolation on the cube $[0,1]^n$ and a certain geometrical characteristic of $Q_n$.
Keywords: functions of $n$ variables, linear interpolation, projection, minimal norm.
@article{MAIS_2009_16_1_a2,
     author = {M. V. Nevskij},
     title = {On a certain relation for the minimal norm of an interpolational projection},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {24--43},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a2/}
}
TY  - JOUR
AU  - M. V. Nevskij
TI  - On a certain relation for the minimal norm of an interpolational projection
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2009
SP  - 24
EP  - 43
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a2/
LA  - ru
ID  - MAIS_2009_16_1_a2
ER  - 
%0 Journal Article
%A M. V. Nevskij
%T On a certain relation for the minimal norm of an interpolational projection
%J Modelirovanie i analiz informacionnyh sistem
%D 2009
%P 24-43
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a2/
%G ru
%F MAIS_2009_16_1_a2
M. V. Nevskij. On a certain relation for the minimal norm of an interpolational projection. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 24-43. http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a2/

[1] M. B. Nevskii, “Otsenki dlya minimalnoi nopmy ppoektopa ppi lineinoi inteppolyatsii po vepshinam $n$-mepnogo kuba”, Modelipovanie i analiz infopmatsionnykh sistem, 10:1 (2003), 9–19

[2] M. B. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Modelipovanie i analiz infopmatsionnykh sistem, 13:2 (2006), 16–29

[3] M. B. Nevskii, “Minimalnye proektory i maksimalnye simpleksy”, Modelipovanie i analiz infopmatsionnykh sistem, 14:1 (2007), 3–10

[4] M. B. Nevskii, “Neravenstva dlya norm interpolyatsionnykh proektorov”, Modelipovanie i analiz infopmatsionnykh sistem, 15:3 (2008), 3–15

[5] A. P. Ppudnikov, Yu. A. Brychkov, Integpaly i pyady, Nauka, M., 1981, 800 pp.

[6] G. Segë, Ortogonalnye mnogochleny, Gos. izd-vo fiz.-mat. literatury, M., 1962, 500 pp.

[7] M. Hudelson, V. Klee, D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl

[8] M. Lassak, “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR