@article{MAIS_2009_16_1_a2,
author = {M. V. Nevskij},
title = {On a certain relation for the minimal norm of an interpolational projection},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {24--43},
year = {2009},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a2/}
}
M. V. Nevskij. On a certain relation for the minimal norm of an interpolational projection. Modelirovanie i analiz informacionnyh sistem, Tome 16 (2009) no. 1, pp. 24-43. http://geodesic.mathdoc.fr/item/MAIS_2009_16_1_a2/
[1] M. B. Nevskii, “Otsenki dlya minimalnoi nopmy ppoektopa ppi lineinoi inteppolyatsii po vepshinam $n$-mepnogo kuba”, Modelipovanie i analiz infopmatsionnykh sistem, 10:1 (2003), 9–19
[2] M. B. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Modelipovanie i analiz infopmatsionnykh sistem, 13:2 (2006), 16–29
[3] M. B. Nevskii, “Minimalnye proektory i maksimalnye simpleksy”, Modelipovanie i analiz infopmatsionnykh sistem, 14:1 (2007), 3–10
[4] M. B. Nevskii, “Neravenstva dlya norm interpolyatsionnykh proektorov”, Modelipovanie i analiz infopmatsionnykh sistem, 15:3 (2008), 3–15
[5] A. P. Ppudnikov, Yu. A. Brychkov, Integpaly i pyady, Nauka, M., 1981, 800 pp.
[6] G. Segë, Ortogonalnye mnogochleny, Gos. izd-vo fiz.-mat. literatury, M., 1962, 500 pp.
[7] M. Hudelson, V. Klee, D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl
[8] M. Lassak, “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR